
MapReduce
February 13, 2020 

Data Science CSCI 1951A 
Brown University 

Instructor: Ellie Pavlick 
HTAs: Josh Levin, Diane Mutako, Sol Zitter

1



Announcements

• Project Pitch Presentations 

• SQL Grades, late handins 
• Questions? Concerns? Anything?

2



Today

3



• Functional-programming paradigm (inspired by 
LISP and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(out_key, 
intermediate_value) 

• Reduce: (out_key, list_of(intermediate_value)) -> 
list_of(out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides4

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(out_key, 
intermediate_value) 

• Reduce: (out_key, list_of(intermediate_value)) -> 
list_of(out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides5

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(out_key, 
intermediate_value) 

• Reduce: (out_key, list_of(intermediate_value)) -> 
list_of(out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides6

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(intermediate_key, 
intermediate_value) 

• Reduce: (out_key, list_of(intermediate_value)) -> 
list_of(out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides7

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(intermediate_key, 
intermediate_value) 

• Reduce: (intermediate_key, 
list_of(intermediate_value)) -> (out_key, out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides8

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(intermediate_key, 
intermediate_value) 

• Reduce: (intermediate_key, 
list_of(intermediate_value)) -> (out_key, out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides

“group by”

9

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by LISP 
and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(intermediate_key, 
intermediate_value) 

• Reduce: (intermediate_key, 
list_of(intermediate_value)) -> (out_key, out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides

Extremely 
Vague General

10

https://research.google.com/archive/mapreduce-osdi04-slides


• Functional-programming paradigm (inspired by 
LISP and friends) 

• Two functions: 

• Map: (in_key, in_value) -> list_of(out_key, 
intermediate_value) 

• Reduce: (out_key, list_of(intermediate_value)) -> 
list_of(out_value)

MapReduce

https://research.google.com/archive/mapreduce-osdi04-slides

distributed grep 
distributed sort 

web link-graph reversal 
web access log stats 

inverted index construction 
document clustering 
machine learning 

statistical machine translation 
…

11

https://research.google.com/archive/mapreduce-osdi04-slides


Map Reduce

• One “master” scheduler which assigns tasks 
(mapping or reducing) to machines 

• No shared state between machines—massively 
parallelizable 

• Assume very high failure rates on workers

12



Map Reduce

• One “master” scheduler which assigns tasks 
(mapping or reducing) to machines 

• No shared state between machines—massively 
parallelizable 

• Assume very high failure rates on workers

13



Map Reduce

• One “master” scheduler which assigns tasks 
(mapping or reducing) to machines 

• No shared state between machines—massively 
parallelizable 

• Assume very high failure rates on workers

14



Map Reduce

• One “master” scheduler which assigns tasks 
(mapping or reducing) to machines 

• No shared state between machines—massively 
parallelizable 

• Assume very high failure rates on workers

You w
ill use

 Spark
 in yo

ur 

homework. S
ame 

algori
thmic ideas ap

ply, 

differe
nt data/m

emory 

manage
ment un

der the
 

hood

15



Counting Words
hello world oh hi there 

world
why hello 

there , 
world

world ! how 
the hell are 

ya ?

Documents

16



Counting Words
hello world oh hi there 

world
why hello 

there , 
world

world ! how 
the hell are 

ya ?

Documents

hello 2 
world 4 

oh 1 
hi 1 

there 2 
why 1 

! 1 
how 1 

…

Counts for 
each word

17



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

18



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

19



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

20



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

21



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1 Reducer 2 Reducer 3 Reducer 4 Reducer 5

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

22



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

23



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

24



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

Map Phase

25



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

Map Phase

Shuffle Phase (“Group By”)

26



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

Map Phase

Shuffle Phase (“Group By”)
NOT Sort! (No guarantee about order of values…)

27



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

Map Phase

Shuffle Phase (“Group By”)

Reduce Phase
28



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

Input

Map Phase

Shuffle Phase (“Group By”)

Reduce Phase

Guarantees 
same key 
processed 
together

Use for e.g. uniquing, 
sorting, etc.

29



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3

(oh, 1)

Reducer 4

(hi, 1)

Reducer 5

(there, 2)

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

30



hello world oh hi there 
world

why hello 
there , 
world

world ! how 
the hell are 

ya ?

Mapper 1 Mapper 2 Mapper 3 Mapper 4

(hello, 1) 
(world, 1)

(oh, 1) 
(hi, 1) 

(there, 1) 
(world, 1)

(why, 1) 
(hello, 1) 
(there, 1) 

(,, 1) 
(world, 1)

(world, 1) 
(!, 1) 

(how, 1) 
(the, 1) 
(hell, 1) 
(are, 1) 
(ya, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3 Reducer 4

(hi, 1) 
(oh, 1) 

(there, 2)

Reducer 5

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

31



hello world
oh hi why hello world ! how

Mapper 1 Mapper 3 Mapper 4 Mapper 5

(hello, 1) 
(world, 1)

(there, 1) 
(world, 1)

(there, 1) 
(,, 1) 

(world, 1)

(the, 1) 
(hell, 1) 
(are, 1)

Mapper 2 Mapper 6

there world

(oh, 1) 
(hi, 1) 

there , 
world

Mapper 7 Mapper 7

the hell are

ya ?

(why, 1) 
(hello, 1) 

(world, 1) 
(!, 1) 

(how, 1) 

(ya, 1) 
(?, 1)

Reducer 1

(hello, 2)

Reducer 2

(world, 4)

Reducer 3 Reducer 4

(hi, 1) 
(oh, 1) 

(there, 2)

Reducer 5

(hello, 1) 
(hello, 1)

(world, 1) 
(world, 1) 
(world, 1) 
(world, 1)

(oh, 1) (hi, 1) (there, 1) 
(there, 1)

32



Map Reduce
//define your mapper function(s) 
def MapFn: (String, String) -> (String, Int) { 
TODO; 
} 

//define your reduce function(s) 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
TODO; 
} 

//define your pipeline 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 

33



Map Reduce
//define your mapper function(s) 
def MapFn: (String, String) -> (String, Int) { 
TODO; 
} 

//define your reduce function(s) 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
TODO; 
} 

//define your pipeline 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 

Warning: 
Code Snippets/

Pseudocode 
(Don’t assume this 

will look exactly like 
this in the hw)

34



//define your mapper function(s) 
def MapFn: (String, String) -> (String, Int) { 
TODO; 
} 

//define your reduce function(s) 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
TODO; 
} 

//define your pipeline 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 

Map Reduce

table
DocID Text

1 hello world
2 oh hi there world

3 why hello there , 
world

4 world ! how the 
hell are ya ?

35



//define your mapper function(s) 
def MapFn: (String, String) -> (String, Int) { 
TODO; 
} 

//define your reduce function(s) 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
TODO; 
} 

//define your pipeline 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 

Map Reduce

output
Word Count
hello 2
world 4

oh 1
hi 1

there 2

table
DocID Text

1 hello world
2 oh hi there world

3 why hello there , 
world

4 world ! how the 
hell are ya ?

36



//define your mapper function(s) 
def MapFn: (String, String) -> (String, Int) { 
TODO; 
} 

//define your reduce function(s) 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
TODO; 
} 

//define your pipeline 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 

Map Reduce

Lots of data types: 
String, Int, Float, Tuples thereof

37



Map Reduce

// enumerate occurrences of each word, with 
// count of 1 
def MapFn: (String, String) -> (String, Int) { 
    for w in input.value().split(){ 
        emit(w, 1); 
    } 
}

38



Map Reduce

// enumerate occurrences of each word, with 
// count of 1 
def MapFn: (String, String) -> (String, Int) { 
    for w in input.value().split(){ 
        emit(w, 1); 
    } 
}

String

39



Map Reduce

// sum the total counts of each word 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
    sum = 0; 
    for c in input.value(){ 
        sum += c; 
    } 
    emit(input.key(), sum); 
}

40



Map Reduce

// sum the total counts of each word 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
    sum = 0; 
    for c in input.value(){ 
        sum += c; 
    } 
    emit(input.key(), sum); 
}

list of ints (counts)

41



// sum the total counts of each word 
def ReduceFn:(String, List(Int)) -> (String, Int){ 
    sum = 0; 
    for c in input.value(){ 
        sum += c; 
    } 
    emit(input.key(), sum); 
}

Map Reduce

the word

list of ints (counts)

42



// enumerate occurrences of each word 
// with count of 1 
def MapFn: (String, String) -> (String, Int) { 
    for w in input.split(){ 
        emit(w, 1); 
    } 
} 

// sum the total counts of each word 
def ReduceFn:(String, List(Int)_ -> (String, Int){ 
    emit(input.key(), 
          sum([c for c in input.value()])); 
} 

// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn().ReduceFn(); 
write(output) 
}

Find the number of occurrences of each word?

Input: String

Map: output (word, 1) 
for every word.

Reduce: Sum counts 
for each word

43



Find the number of unique documents that each word 
occurs in?

(non)Clicker Question!

44



// enumerate occurrences of each word 
// with count of 1 
def MapFn1: String -> (String, Int) { 
    ??? 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().ReduceFn1().ReduceFn2(); 
write(output) 
}

Find the number of unique documents that each word 
occurs in?

(non)Clicker Question!

45



// enumerate occurrences of each word 
// with count of 1 
def MapFn1: String -> (String, Int) { 
    ??? 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().ReduceFn1().ReduceFn2(); 
write(output) 
}

Find the number of unique documents that each word 
occurs in?

(non)Clicker Question!

No using sets! 
(use reducers 

instead)

46



// enumerate occurrences of each word 
// with count of 1 
def MapFn1: String -> (String, Int) { 
    ??? 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().ReduceFn1().ReduceFn2(); 
write(output) 
}

Find the number of unique documents that each word 
occurs in?

(non)Clicker Question!

No using sets! 
(use reducers 

instead)

47



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

D1 D2 D3 D4

48



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

D1 D2 D3 D4

Mapper Mapper Mapper Mapper

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

49



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

D1 D2 D3 D4

Mapper Mapper Mapper Mapper

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

Reducer 1 Reducer 2 Reducer 3 Reducer 4

50



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

Mapper Mapper Mapper Mapper

D1 D2 D3 D4

Reducer 1 Reducer 2 Reducer 3 Reducer 4

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

(hello, 1) (world, 1) (world, 1) (?, 1)

51



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

Mapper Mapper Mapper Mapper

Reducer 1 Reducer 2 Reducer 3

D1 D2 D3 D4

Reducer 1 Reducer 2 Reducer 3 Reducer 4

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

(hello, 1) (world, 1) (world, 1) (?, 1)

52



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

Mapper Mapper Mapper Mapper

Reducer 1 Reducer 2 Reducer 3

D1 D2 D3 D4

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

(hello, 1) (world, 1) (world, 1) (?, 1)

(hello, 2) (world, 4) (?, 1)

Reducer 1 Reducer 2 Reducer 3 Reducer 4

53



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

Mapper Mapper Mapper Mapper

Reducer 1 Reducer 2 Reducer 3

D1 D2 D3 D4

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

(hello, 1) (world, 1) (world, 1) (?, 1)

(hello, 2) (world, 4) (?, 1)

Reducer 1 Reducer 2 Reducer 3 Reducer 4

Why can’t we use mappers 
for this step?

54



hello world,  
just saying 

hello
oh hi, hi 

there world
why hello 

there , 
world

world ! how 
the hell are 

ya ? ? ?

Mapper Mapper Mapper Mapper

Reducer 1 Reducer 2 Reducer 3

D1 D2 D3 D4

((D1, hello), 1) 
((D1, world), 1) 

… 
((D1, hello), 1)

…. ….

((D4, world), 1) 
… 

((D4, ?), 1) 
((D4, ?), 1)

(hello, 1) (world, 1) (world, 1) (?, 1)

(hello, 2) (world, 4) (?, 1)

Reducer 1 Reducer 2 Reducer 3 Reducer 4

Why can’t we use mappers 
for this step?

Same keys won’t necessarily get 
processed together… 

55



// enumerate occurrences of each word 
// with count of 1 
def MapFn1: String -> (String, Int) { 
    ??? 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    ??? 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().ReduceFn1().ReduceFn2(); 
write(output) 
}

Find the number of unique documents that each word 
occurs in?

(non)Clicker Question!

56



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences of each word 
// with count of 1 
def MapFn1: (String, String) -> ((String, String), Int) { 
    for w in input.value().split(){ 
        emit((input.key(), w), 1) 
    } 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    emit(input.key()[1], 1)   
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    sum = 0; 
    for (w, c) in input{ sum += c; } 
    emit(w, sum); 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().MapFn2().ReduceFn(); 
write(output) 
}

57



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences of each word 
// with count of 1 
def MapFn1: (String, String) -> ((String, String), Int) { 
    for w in input.value().split(){ 
        emit((input.key(), w), 1) 
    } 
} 
def ReduceFn1: (String, List(Int)) -> (String, Int) { 
    emit(input.key()[1], 1)   
} 
// sum the total counts of each word 
def ReduceFn2: (String, List(Int)) -> (String, Int) { 
    sum = 0; 
    for (w, c) in input{ sum += c; } 
    emit(w, sum); 
} 
// define your pipeline 
def main() { 
Table<String, String> table = read(table_path) 
Table<String, Int> output = 
    table.MapFn1().MapFn2().ReduceFn(); 
write(output) 
}

ignore the value list! (“unique”)

58



Clicker Question!

59



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

60



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit(input.key(), w) 
 } 
} 
def ReduceFn1: { 
 for w in input.value(){emit(w, 1)}   
} 
// sum the total counts 
// of each word 
def ReduceFn2:(S, I) -> (S, I){ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

61



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit(input.key(), w) 
 } 
} 
def ReduceFn1: { 
 for w in input.value(){emit(w, 1)}   
} 
// sum the total counts 
// of each word 
def ReduceFn2:(S, I) -> (S, I){ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

Clicker Question!

Do these produce the same output?
(a)Yes       (b) No62



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit(input.key(), w) 
 } 
} 
def ReduceFn1: { 
 for w in input.value(){emit(w, 1)}   
} 
// sum the total counts 
// of each word 
def ReduceFn2:(S, I) -> (S, I){ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

Do these produce the same output?
(a)Yes       (b) No

Clicker Question!

63



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit(input.key(), w) 
 } 
} 
def ReduceFn1: { 
 for w in input.value(){emit(w, 1)}   
} 
// sum the total counts 
// of each word 
def ReduceFn2:(S, I) -> (S, I){ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

Do these produce the same output?
(a)Yes       (b) No

unique 
documents a 

word occurs in

Clicker Question!

64



Find the number of unique documents that each word 
occurs in?

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit(input.key(), w) 
 } 
} 
def ReduceFn1: { 
 for w in input.value(){emit(w, 1)}   
} 
// sum the total counts 
// of each word 
def ReduceFn2:(S, I) -> (S, I){ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

// enumerate occurrences 
// of each word with count of 1 
def MapFn1: { 
 for w in input.value().split(){ 
  emit((input.key(), w), 1) 
 } 
} 
def ReduceFn1: { 
 emit(input.key()[1], 1)   
} 
// sum the total counts 
// of each word 
def ReduceFn2:{ 
 sum = 0; 
 for (w, c) in input{ sum += c; } 
 emit(w, sum); 
}

Do these produce the same output?
(a)Yes       (b) No

unique 
documents a 

word occurs in

???

Clicker Question!

65



Clicker Question!

What will this produce?

def ReduceFn1: (S, S) -> (S, I) { 
    for w in input.value(){ 
        emit(w, 1) 
    }   
} 

def ReduceFn2:(S, I) -> (S, I){ 
    sum = 0; 
    for (w, c) in input{ 
       sum += c; 
    } 
    emit(w, sum); 
}

(a) here:2, are:2, some:1, words:3 
(b) here:2, are:2, some:1, words:5 
(c) here:1, are:1, some:1, words:1

Input K: V 
Doc1 : here are some words 
Doc2: words words words 
Doc3: here are words

def MapFn1: (S, S) -> (S, S) { 
    for w in input.value().split(){ 
        emit(input.key(), w) 
    } 
}

66



Clicker Question!

What will this produce?

def ReduceFn1: (S, S) -> (S, I) { 
    for w in input.value(){ 
        emit(w, 1) 
    }   
} 

def ReduceFn2:(S, I) -> (S, I){ 
    sum = 0; 
    for (w, c) in input{ 
       sum += c; 
    } 
    emit(w, sum); 
}

(a) here:2, are:2, some:1, words:3 
(b) here:2, are:2, some:1, words:5 
(c) here:1, are:1, some:1, words:1

Input K: V 
Doc1 : here are some words 
Doc2: words words words 
Doc3: here are words

def MapFn1: (S, S) -> (S, S) { 
    for w in input.value().split(){ 
        emit(input.key(), w) 
    } 
}

67



Clicker Question!

def MapFn1: (S, S) -> (S, S) { 
    for w in input.value().split(){ 
        emit(input.key(), w) 
    } 
}

What will this produce?

def ReduceFn1: (S, S) -> (S, I) { 
    for w in input.value(){ 
        emit(w, 1) 
    }   
} 

def ReduceFn2:(S, I) -> (S, I){ 
    sum = 0; 
    for (w, c) in input{ 
       sum += c; 
    } 
    emit(w, sum); 
}

(a) here:2, are:2, some:1, words:3 
(b) here:2, are:2, some:1, words:5 
(c) here:1, are:1, some:1, words:1

Input K: V 
Doc1 : here are some words 
Doc2: words words words 
Doc3: here are words

Reducer is by DocId only, so 
just counts total occurrences

68



Other MapReduce 
Functions

• Sort 

• Unique 

• Sample 

• First 

• Filter 

• Join

69



Other MapReduce 
Functions

• Sort 

• Unique 

• Sample 

• First 

• Filter 

• Join

70



Other MapReduce 
Functions

• Sort 

• Unique 

• Sample 

• First 

• Filter 

• Join

• Joins are usually computed 
“under the hood” by most MR 
implementations (like in SQL) 

• But you can imagine having to 
do them yourself…

71



Real Life Application

72



Is Charles Mingus a composer?

Real Life Application

73



Is Charles Mingus a composer?

“Mingus is a composer”

Real Life Application

74



Is Charles Mingus a composer?

“Mingus is a composer”

Real Life Application

75



Is Charles Mingus a 1950s American jazz composer?

“Mingus is a 1950s American jazz composer”

Real Life Application

76



Is Charles Mingus a 1950s American jazz composer?

Real Life Application

77



Is Charles Mingus a 1950s American jazz composer?

“Mingus is a 1950s American jazz composer”
… if Mingus is a composer worthy of our 

attention, it must be because…

A virtuoso bassist and composer, Mingus 
irrevocably changed the face of jazz…

Mingus dominated the scene back in the 
1950s and 1960s.

Mingus was truly a product of America in all 
its historic complexities…

Real Life Application

78



ComposerX is a 1950s composer.

ComposerX dominated the scene back 
in the 1950s and 1960s.

Real Life Application

79



Real Life Application
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

80



Subject Predicate Object
Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Joins

Desired output:

Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US_Presidents, 
Huffington_Post_Columnists

Kamala Lopez wrote an op-ed for HuffPo Person, 
Huffington_Post_Columnists, 

Actor

Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

81



Subject Predicate Object
Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Desired output:

Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US_Presidents, 
Huffington_Post_Columnists

Kamala Lopez wrote an op-ed for HuffPo Person, 
Huffington_Post_Columnists, 

Actor

Joins
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

82



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Joins

83



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Joins

84



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Key: String 
Value: (list_of((String, String, String), list_of((String, String))

Joins

85



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Key: String 
Value: (list_of((String, String, String), list_of((String, String))

Joins

Entity

86



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Key: String 
Value: (list_of((String, String, String), list_of((String, String))

Joins

All the facts 
for that entity

87



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Key: String 
Value: (list_of((String, String, String), list_of((String, String))

Joins

All the 
categories for 

that entity

88



Facts
Subject Predicate Object

Barack Obama won the electoral vote
Kamala Lopez wrote an op-ed for HuffPo
Charles Mingus wrote jazz
Barack Obama opposed the appropriations bill
Barack Obama listens to jazz

Categories
Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Select * from Facts, Categories 
Where Subject == Entity 
GroupBy Subject

Key: String 
Value: (list_of((String, String, String), list_of((String, String))

Joins

All the 
categories for 

that entity

// rekey table by entity 
def MapFn1: (String, Obj) -> (String, Obj) { 
    emit(input.value().entity(), input.value()) 
} 

// rekey table by subject 
def MapFn2: (String, Obj) -> (String, Obj) { 
    emit(input.value().subject(), input.value()) 
} 

// define your pipeline 
def main() { 
Table<String, Obj> cats = read(table1_path).MapFn1() 
Table<String, Obj> facts = read(table2_path).MapFn2() 
output = cats.join(facts).MapFn3(. . .

89



Bottlenecks!
90



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

91



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

Clicker Question! 

92



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

Clicker Question! 

In the best-case scenario, how much 
parallelization could we get here 
(maximum number of mappers)?
(a) N 
(b) log(N) 
(c) 5

93



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

Clicker Question! 

In the best-case scenario, how much 
parallelization could we get here 
(maximum number of mappers)?
(a) N 
(b) log(N) 
(c) 5

94



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…Clicker Question! 
How about here?

(a) N 
(b) M 
(c) N*M 95



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…Clicker Question! 
How about here?

(a) N 
(b) M 
(c) N*M 96



Doc1 Doc2 DocN…

Mappers: (DocID, Sent) -> (Word, Count)

Mappers: (DocID, Doc) -> (DocID, Sent)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…Clicker Question! 
How about here?

(a) N 
(b) M 
(c) N*M

Mapping doesn’t require 
the same keys to route 
to the same machine.97



Mapper2: 
(DocID, Sent) -> (Word, Count)

Mapper1: 
(DocID, Doc) -> (DocID, Sent)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

Clicker Question! 
Which is (likely to be) faster?

Mapper: 
(DocID, Doc) -> (Word, Count)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

(a) (b)

(c) They are the same
98



Mapper2: 
(DocID, Sent) -> (Word, Count)

Mapper1: 
(DocID, Doc) -> (DocID, Sent)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

Clicker Question! 
Which is (likely to be) faster?

Mapper: 
(DocID, Doc) -> (Word, Count)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

(a) (b)

(c) They are the same

Doc 
= li

st_o
f(Se

nten
ce) 

Sent
ence

 = l
ist_

of(W
ord)

99



Mapper2: 
(DocID, Sent) -> (Word, Count)

Mapper1: 
(DocID, Doc) -> (DocID, Sent)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

Clicker Question! 
Which is (likely to be) faster?

Mapper: 
(DocID, Doc) -> (Word, Count)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

(a) (b)

(c) They are the same
100



Mapper2: 
(DocID, Sent) -> (Word, Count)

Mapper1: 
(DocID, Doc) -> (DocID, Sent)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

Clicker Question! 
Which is (likely to be) faster?

Mapper: 
(DocID, Doc) -> (Word, Count)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

(a) (b)

(c) They are the same

Smaller jobs = more 
dynamic load balancing 
and faster recovery from 

failure

101



Mapper2: 
(DocID, Sent) -> (Word, Count)

Mapper1: 
(DocID, Doc) -> (DocID, Sent)

Reducer:  
(Word, Count) -> Word, 

sum(Count)

Clicker Question! 
Which is (likely to be) faster?

Mapper: 
(DocID, Doc) -> (Word, Count) 

for sentence in doc: 
    for word in sentence:  
          blah blah

Reducer:  
(Word, Count) -> Word, 

sum(Count)

(a) (b)

(c) They are the same

In general, nested 
loops should be 
refactored into 

multiple mappers

102



Doc1 Doc2 DocN…

Mappers: (Sent, 1) -> (Word, Count)

Mappers: (DocID, Doc) -> (Sent, 1)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

(non)Clicker Question! 

What might be bad here?

103



Doc1 Doc2 DocN…

Mappers: (Sent, 1) -> (Word, Count)

Mappers: (DocID, Doc) -> (Sent, 1)

Sent1 Sent2 SentM

Word1 Word2 WordK

Reducers: (Word, Count) -> Word, sum(Count)

✔

…

…

(non)Clicker Question! 

What might be bad here?
Skewed Key Distributions!  

(Need all values with the same key to be together, 
so can’t automatically load balance)

104



Zipf’s Law
W

or
d 

Fr
eq

ue
nc

y

Word Rank
https://en.wikipedia.org/wiki/Zipf%27s_law105



Zipf’s Law
W

or
d 

Fr
eq

ue
nc

y

Word Rank

“The frequency of any word is 
inversely proportional to its rank in 
the frequency table” (Wikipedia)

https://en.wikipedia.org/wiki/Zipf%27s_law106



Zipf’s Law
W

or
d 

Fr
eq

ue
nc

y

Word Rank

the = 7%

https://en.wikipedia.org/wiki/Zipf%27s_law

“The frequency of any word is 
inversely proportional to its rank in 
the frequency table” (Wikipedia)

107



Zipf’s Law
W

or
d 

Fr
eq

ue
nc

y

Word Rank

the = 7%

of = 3.5%

https://en.wikipedia.org/wiki/Zipf%27s_law

“The frequency of any word is 
inversely proportional to its rank in 
the frequency table” (Wikipedia)

108



Zipf’s Law
W

or
d 

Fr
eq

ue
nc

y

Word Rank

The most frequent 0.2% of words  
make up 50% of occurrences.

109



Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US_Presidents, 
Huffington_Post_Columnists

Kamala Lopez wrote an op-ed for HuffPo
Person, 

Huffington_Post_Columnists, 
Actor

Predicate Object Category Score
won the electoral vote US_Presidents 0.92
won the electoral vote Person 0.89
won the electoral vote Huffington Post Columnists 0.23

wrote an op-ed for HuffPo Huffington Post Columnists 0.99
wrote an op-ed for HuffPo Person 0.91

Real Life Application

110



Subject Predicate Object Categories

Barack Obama won the electoral vote Person, US_Presidents, 
Huffington_Post_Columnists

Kamala Lopez wrote an op-ed for HuffPo
Person, 

Huffington_Post_Columnists, 
Actor

Predicate Object Category Score
won the electoral vote US_Presidents 702,345
won the electoral vote Person 812,485
won the electoral vote Huffington Post Columnists 24,571

wrote an op-ed for HuffPo Huffington Post Columnists 134,213
wrote an op-ed for HuffPo Person 136,091

Real Life Application

111



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

category, (predicate, object)

Reducer1: 
category, list_of(predicate, object) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

…

…

First Attempt

112



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

category, (predicate, object)

Reducer1: 
category, list_of(predicate, object) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

…

…

First Attempt

113



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

category, (predicate, object)

Reducer1: 
category, list_of(predicate, object) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

…

…

First Attempt

Every tuple involving a 
single category (e.g. 

“Person”) has to go through 
the same reducer…114



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

category, (predicate, object)

Reducer1: 
category, list_of(predicate, object) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

…

…

First Attempt

115



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

category, (predicate, object)

Reducer1: 
category, list_of(predicate, object) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

…

…

First Attempt

116



Mapper1: 
(subject, predicate, object), list_of(categories) -> 

(category, predicate, object), 1

Reducer2: 
(category, predicate, object), list_of(count) -> 

(category, predicate, object), total

✔

…

So much better!

117



ok ok ok go go go. 
enjoy the long weekend!

118


