MapReduce

February 13, 2020
Data Science CSCI 1951A
Brown University

Instructor: Ellie Pavlick
HTAs: Josh Levin, Diane Mutako, Sol Zitter

Announcements

* Project Pitch Presentations
 SQL Grades, late handins

* Questions? Concerns? Anything?

MapReduce

https://research?google.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

https://researchXyoogle.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

e Two functions:

https://research®oogle.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

e Two functions:

 Map: (in_key, in_value) -> list_of(intermediate_key,
intermediate_value)

https://research/google.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

e Two functions:

 Map: (in_key, in_value) -> list_of(intermediate_key,
intermediate_value)

 Reduce: (intermediate_key,
ist_of(intermediate_value)) -> (out_key, out_value)

https://research®oogle.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

e Two functions:

 Map: (in_key, in_value) -> list_of(intermediate_key,
intermediate_value)

“g‘rcmp bj"
 Reduce: (intermediate_key,
ist_of(intermediate_value)) -> (out_key, out_value)

https://research®google.com/archive/mapreduce-osdi04-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

* Functional-programming paradigm (inspired by LISP
and friends)

e Two functions:

 Map: (in_key, in_value) -> list_of(intermediate_key,
intermediate_value)

 Reduce: (intermediate_key,
ist_of(intermediate_value)) -> (out_key, out_value)

https://research'$oogle.com/archive/mapreduce-osdiO4-slides

https://research.google.com/archive/mapreduce-osdi04-slides

MapReduce

distributed grep
distributed sort
web Link-graph reversal
web access log stats
thverted index construction
document clustering
machine learning
stabistical machine btranslation

https://researchlboogle.com/archive/mapreduce-osdiO4-slides

https://research.google.com/archive/mapreduce-osdi04-slides

Map Reduce

* One "master” scheduler which assigns tasks
(mapping or reducing) to machines

12

Map Reduce

* One "master” scheduler which assigns tasks
(mapping or reducing) to machines

* No shared state between machines—massively
parallelizable

13

Map Reduce

* One "master” scheduler which assigns tasks
(mapping or reducing) to machines

* No shared state between machines—massively
parallelizable

* Assume very high failure rates on workers

14

Map Reduce

e One “master’” sk~

. Ay
(mapping or re /o ew© \.é o a\”\”"‘t)’

: e v of
* No shared state &LQOV”E V\‘; doko/ e %:\??-
| | W)
parallelizable &L%ﬁe@n‘\@y& e
WO
. Assume very high & V\O‘?.a;us

P

15

Countin

g Woras

Documents
. why hello world ! how
hello world oh hi there there | the hell are
world
world ya ?

16

Count

ing Words

Documents
. why hello world ! how
hello world oh hi there there | the hell are
world
world ya ?
T ——— T ——— T ———— T————
v
hello 2
world 4
h 1
o Counts for
there 2 each word
why 1
| 1
how 1
7-4-7’—

hello world

ﬁ

oh hi there
world

r—“

18

why hello
there |,
world

r_‘

world | how
the hell are
ya 7

r_‘

oh hi there why hello world ! how
hello world there |, the hell are
world
world ya ?
| . ™ e

Mapper 1 Mapper 2 Mapper 3 Mapper 4

19

|
oh hi there why hello world ! how

hello world there |, the hell are
world
world ya 7
- ———— = ———— = ————— - ————
)) ! !
Mapper 1 Mapper 2 Mapper 3 Mapper 4
(hello, 1) (oh, 1) (why, 1) (world, 1)
(world, 1) (hi, 1) (hello, 1) (!, 1)
(there, 1) (there, 1) (how, 1)
(world, 1) (,, 1) (the, 1)
(world, 1) (hell, 1)
(are, 1)
(ya, 1)

20

oh hi there why hello world ! how
hello world there |, the hell are
world
world ya 7
Mapper 1 Mapper 2 Mapper 3

(hello, 1) (why, 1)
(world, 1) I (hello, 1)

(hello, 1) (world, 1) (hi, 1) (there, 1)
(hello, 1) (world, 1) (there, 1)
(world, 1)
(world, 1)

21

hello world oh hi there
world
T T
Mapper 1 Mapper 2

\4

why hello
there |
world

I

Mapper 3

(why, 1)
(hello, 1)

(hi, 1)

(hello, 1) (world, 1)
(hello, 1) (world, 1)
(world, 1)

l (vvorlld, 1)
Reducer 1 Reducer 2

Reducer 3

world | how
the hell are
ya 7

(there, 1)
(there, 1)

22

Reducer 4 Reducer 5

oh hi there why hello world ! how
hello world there |, the hell are
world
world ya 7
Mapper 1 Mapper 2 Mapper 3
(why, 1)
(hello, 1)

(hello, 1) (world, 1)
(hello, 1) (world, 1)
(world, 1)
l (world, 1)
| v
Reducer 1 Reducer 2 Reducer 3
v v v
(hello, 2) (world, 4) (oh231)

(hi, 1) (there, 1)
(there, 1)
\ 4
Reducer 4 Reducer 5
\4 \ 4
(hi, 1) (there, 2)

INnput

v v v v
Mapper 1 Mapper 2 Mapper 3 Mapper 4
(hello, 1) (why, 1) (world, 1)

(hi, 1) (hello, 1)

(hello, 1) (world, 1) (hi, 1) (there, 1)
(hello, 1) (world, 1) (there, 1)
(world, 1)
l (world, 1)
l \ 4 \ 4
Reducer 1 Reducer 2 Reducer 3 Reducer 4 Reducer 5
\ 4 \ 4 \ 4 \ 4 \ 4
(hello, 2) (world, 4) (oh, 1) (hi, 1) (there, 2)

24

INnput

Map Phase

(hi, 1)

v

(hello, 1) (world, 1)
(hello, 1) (world, 1)
(world, 1)
l (world, 1)
| v
Reducer 1 Reducer 2 Reducer 3
v v v
(hello, 2) (world, 4) (oh, 1)

25

Reducer 4

(there, 1)
(there, 1)

\4

(hi, 1)

Reducer 5

\4

(there, 2)

INnput

E L o+ o+

Map Phase

7 N — - ———

Shuffle Phase (“Group By”)

¢ | ¢ ¢ ¢

Reducer 1 Reducer 2 Reducer 3 Reducer 4 Reducer 5
\ 4 \ 4 \ 4 \ 4 \ 4

(hello, 2) (world, 4) (oh, 1) (hi, 1) (there, 2)

26

INnput

E o+ o+ o+

Map Phase

/ \) Z \ /\\I\) 1114\ \)]

NOT Sort! (No quarantee about order ofaalues...)

Shuftle Phase (“"Group By”)

¢ | ¢ ¢ ¢

Reducer 1 Reducer 2 Reducer 3 Reducer 4 Reducer 5
\ 4 \ 4 \ 4 \ 4 \ 4

(hello, 2) (world, 4) (oh, 1) (hi, 1) (there, 2)

27

INnput

Map Phase

7 N — - ———

Shuffle Phase (“Group By”)

Reduce Phase

INnput

Map Phase

/ \) Z \ /\\'\) L ll AN \ I‘l]

Shuffle Phase (“Group By")

Cruaranbees

- same. L@ej

processed Reduce ‘ Wse for e.g. uniquing,

together sorting, ek,

oh hi there why hello world ! how
hello world there |, the hell are
world
world ya 7
Mapper 1 Mapper 2 Mapper 3
(why, 1)
(hello, 1)

(hello, 1) (world, 1)
(hello, 1) (world, 1)
(world, 1)
l (world, 1)
| v
Reducer 1 Reducer 2 Reducer 3
v v v
(hello, 2) (world, 4) (oh301)

(hi, 1) (there, 1)
(there, 1)
\ 4
Reducer 4 Reducer 5
\4 \ 4
(hi, 1) (there, 2)

oh hi there why hello world ! how
hello world there |, the hell are
world
world ya ?
. W . PT'. .
Mapper 2 Mapper 3
(why, 1) (world, 1)

(hello, 1) (1, 1)

(how, 1)

(hello, 1) (world, 1) (hi, 1) (there, 1)
(hello, 1) (world, 1) (there, 1)
(world, 1)
l (world, 1)
| v

Reducer 1 Reducer 2 Reducer 4

v v (hiy 1)
(hello, 2) (world, 4) (oh, 1)

3 (there. 2)

o h why hello ‘ world ! how ya 7
hello world
there world there |, the hell are
— world
e | T l v
Mapper 1 Mapper 2 Mapper 3| | Mapper 4 | | Mapper 5| | Mapper 6 | | Mapper 7 | | Mapper 7
(hello, 1) (there, 1) (why, 1) (there, 1) (world, 1) (the, 1) (ya, 1)
(world, 1) (hi, 1) (world, 1) T(hello, 1) (, (1, 1) (hell, 1) (2, 1)
~orld, 1) ow, 1) (are, 1)
(hello, 1) (world, 1) (hi, 1) (there, 1)
(hello, 1) (world, 1) (there, 1)
(world, 1)
l (world, 1)
| v
Reducer 1 Reducer 2 Reducer 4
v v (hiy 1)
(hello, 2) (world, 4) (oh, 1)

32 (there. 2)

Map Reduce

//define vyour mapper function (s)

def MapFn: (String, String) -> (String, Int) {
TODO;

}

//define vyour reduce function (s)
def ReduceFn: (String, List(Int)) -> (String, Int) {

TODO;
J

//define your pipeline
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFn () .ReduceFn () ;

wrilte (output)

33

WARNING:
CODE SNIPPETS/
PSEUDOCODE
. (DON’T ASSUME THIS
df WILL LOOK EXACTLY LIKE [9)
THIS IN THE HW) :

educe

ftion(s)
-> (String, Int) {

//define vyour reduce function (s)
def ReduceFn: (String, List(Int)) -> (String, Int) {

TODO;
J

//define your pipeline
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFn () .ReduceFn () ;

wrilte (output)

34

Map Reduce

//define vyour mapper function (s)
(String, Int)

def MapFn: (String, String) ->
TODO;

table

J

//define your reduce function
def ReduceFn: (String, List(
TODO;

J

DoclD

Text

hello world

oh hi there world

why hello there |
world

world ! how the
hell are ya ?

//define your pipeli#e
Table<String, Strirfg> table =
Table<String, Int> output =

table.MapFn () .ReduceFn () ;
wrilte (output)

35

{

Int) {

read (table path)

Map Reduce

//define vyour mapper function (s)

def MapFn: (String, String)
TODO;
) output
Word Count
hello 2 -
/ /de World . >~ function
def oh 1 J s
TODO hi 1
} there 2

//define yoyr pipelize

Table<String,
Table<String,

Strirfg> table =
Int> output =

table.MapFn () .ReduceFn () ;

wrilte (output)

36

—->

(String, Int) {
table
DoclID Text
1 hello world
2 oh hi there world
3 why hello there |
world
4 world ! how the
hell are ya ?

read (table path)

Int) {

Map Reduce

//define vyour mapper function (s)
def MapFn: (String, String) -> (String, Int) {

TODO;
J

//define vyour reduce function (s)

def ReduceFn: (String, List(Int)) -> (String, Int) {
?ODO’ Lots of data types:
String, Ink, Float, Tuples thereot

//define your pipeline
Table<String, String> f@ble = read(table path)

Table<String, Int> output =
table.MapFn () .ReduceFn () ;

wrilte (output)

37

Map Reduce

// enumerate occurrences of each word, with
// count of 1
def MapFn: (String, String) -—-> (String, Int) {
for w 1n input.value () .split () {
emit (w, 1);

J

38

Map Reduce

// enumerate occurrences of each word, with
// count of 1
def MapFn: (String, String) -> (String, Int) {
for w in input.value () .split () {
emit (w, 1); ko

39

Map Reduce

// sum the total counts of each word
def ReduceFn: (String, List(Int)) -> (String, Int) {
sum = 0;
for ¢ 1n input.value() {
sum += cC;
}

emit (1nput.key (), sum);

40

Map Reduce

// sum the total counts of each word

def ReduceFn: (String, List(Int)) -> (String, Int) {
sum = 0;

for ¢ in input.value () { =
sum += C;

List of inks (counks)
}

emit (1nput.key (), sum);

41

Map Reduce

// sum the total counts of each word

def ReduceFn: (String, List(Int)) -> (String, Int) {
sum = 0;

for ¢ in input.value () { =
sum += C;

List of inks (counks)

}
emit (input.key (Mfjmstommmpmm——

the word

42

Find the number of occurrences of each word?

// enumerate occurrences of each word .
// with count of 1 Input: String
def MapFn: (String, String) -> (String, Int) {
for w 1n input.split() {
emit (w, 1); l

}
Map: output (word, 1)

}
for every word.

// sum the total counts of each word

def ReduceFn: (String, List(Int) -> (String, Int) {
emlt (1nput.key (),
sum([c for ¢ in input.value()]));
} v
// define your pipeline Reduce: Sum counts
def main() { for each word

Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapfFn () .ReducefFn () ;

write (output)

}
43

(hon)Clicker Question!

Find the nhumber of unique documents that each word
occurs in?

44

(hon)Clicker Question!

Find the nhumber of unique documents that each word
occurs in?

// enumerate occurrences of each word

// with count of 1
def MapFnl: String -> (String, Int) {
PAPRP

}
def ReduceFnl: (String, List(Int)) -> (String, Int) {

fafar

J

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
PRPEP)

}

// define your pipeline

def main () {
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .ReduceFnl () .ReduceFn2 () ;

write (output)
} 45

(hon)Clicker Question!

Find the nhumber of unique documents that each word
occurs in?
|

// enumerate occurrences of each worNO M,Siehg selea!

// with count of 1
def MapFnl: String -> (String, Int) (M,,SQ_ T‘QC&,M&QT‘S

'? '? 'D
} instead)
def ReduceFnl: (String, List(Int)) -> (String, Int) {
P77

J

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
PRPEP)

}

// define your pipeline

def main () {
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .ReduceFnl () .ReduceFn2 () ;

write (output)
J 46

(hon)Clicker Question!

Find the nhumber of unique documents that each word
occurs in?
|

// enumerate occurrences of each worNO M,Siehg selea!

// with count of 1
def MapFnl: String -> (String, Int) (M,,SQ_ T‘QC&,M&QT‘S

'? '? 'D
} instead)
def ReduceFnl: (String, List(Int)) -> (String, Int) {
P77

J

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
PRPEP)

}

// define your pipeline

def main () {
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .ReduceFnl () .ReduceFnZ2 () ;

write (output)
} 47

D1

hello world,
just saying
hello

ﬁ

D2

oh hi, hi
there world

ﬁ

48

D3

why hello
there |
world

ﬁ

D4

world | how

the hell are
ya? 7?7

ﬁ

D1

hello world,
just saying
hello

!

Mapper

(D1, hello), 1)
(D1, world), 1)

(D1, hello), 1)

D2

oh hi, hi
there world

!

Mapper

49

D3

why hello
there |
world

!

Mapper

D4

world | how

the hell are
ya? 7?7

!

Mapper

(D4, world), 1)

D1 D2 D3 D4

hello world, — why hello world ! how

. . oh hi, hi

just saying there world there | the hell are
hello world ya???

ol D Bl T Rl T Rl
Mapper Mapper Mapper Mapper
(D1, hello), 1) (D4, world), 1)

(D1, world), 1)
(D4, ?7), 1)
(([P1, hello), 1 (D4, ?7), 1)
Reducer 1 Reducer 2 Reducer 3 Reducer 4

50

D1 D2 D3 D4

hello world, — why hello world ! how
. . oh hi, hi
just saying there world there | the hell are
hello world ya???
T T T T
Mapper Mapper Mapper Mapper
(D1, hello), 1) (D4, world), 1)
(D1, world), 1)
(D4, ?7), 1)
(([P1, hello), 1 (D4, ?7), 1)
Reducer 1 Reducer 2 Reducer 3 Reducer 4

(hello, 1) (world, 1) (world, 1) (7, 1)

51

D1

hello world,
just saying
hello

(D1, world), 1)

(D1, hello), 1

v

Reducer 1

(hello, 1)

N\

D2

oh hi, hi
there world

-

Mapper

Reducer 2

(world, 1)

D3

why hello
there |,
world

Mapper

Reducer 3

(world, 1)

D4

world | how

the hell are
ya? 7?7

—

Mapper

(D4, world), 1)

(D4, ?), 1)
(D4, ?7), 1)

Reducer 4

(2, 1)

)

\ / /

Reducer 1

Reducer 2

Reducer 3

D1 D2 D3 D4
hello world, — why hello world ! how
. . oh hi, hi
just saying there world there | the hell are
hello world ya???
Mapper Mapper Mapper Mapper
(D1, hello), 1) (D4, world), 1)
(D1, world), 1)
((D4,7), 1)
((D1, hello), 1 ((D4,7), 1)
Reducer 1 Reducer 2 Reducer 3 Reducer 4
(hello, 1) (world, 1) (world, 1) (7, 1)
Reducer 1 Reducer 2 Reducer 3
(hello, 2) (world, 4) (7, 1)

53

D1 D2 D3 D4
hello world, A hi why hello world ! how
just saying tho : IId there , the hell are

hello ere wor world ya???

Mapper Mapper Mapper Mapper
(D4, 7). 1)
Why cant we use mappers: -

Reducer 1

or this séep?

Reducer 2

Reducer 3 Reducer 4

Reducer 1

Reducer 2

!

(hello, 2)

Reducer 3

!

(vvorIcSiL,1 4)

!

(2. 1)

D1 D2 D3 D4

hello world, - why hello world ! how

. . oh hi, hi

just saying there world there | the hell are
hello world ya???

(D4, ?), 1)
1

'”Whv cont we usé“h«mmaem, 2)
or this sﬁep?

Reducer 1 Reducer 2 Reducer 3 Reducer 4

Same keys woht necessarily qget
processed together...

! ! !

(hello, 2) (world, 4) (7, 1)

(hon)Clicker Question!

Find the nhumber of unique documents that each word
occurs in?

// enumerate occurrences of each word

// with count of 1
def MapFnl: String -> (String, Int) {
PAPRP

}
def ReduceFnl: (String, List(Int)) -> (String, Int) {

fafar

J

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
PRPEP)

}

// define your pipeline

def main () {
Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .ReduceFnl () .ReduceFn2 () ;

write (output)
} 56

// enumerate occurrences of each word
// with count of 1
def MapFnl: (String, String) -> ((String, String), Int) {
for w 1n 1nput.value() .split () {
emlt ((1nput.key (), w), 1)
}

}
def ReduceFnl: (String, List(Int)) -> (String, Int) {

emlt (1nput.key () [1], 1)
}

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
sum = 0;
for (w, ¢) 1n input{ sum += c; }
emlt (w, sum);

}

// define your pipeline

def main () {

Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .MapFnZ2 () .ReduceFn () ;

write (output)

J

o7

// enumerate occurrences of each word
// with count of 1
def MapFnl: (String, String) -> ((String, String), Int) {
for w 1n 1nput.value() .split () {
emlt ((1nput.key (), w), 1)
}

// sum the total counts of each word

def ReduceFn2: (String, List(Int)) -> (String, Int) {
sum = 0;
for (w, ¢) 1n input{ sum += c; }
emlt (w, sum);

}

// define your pipeline

def main () {

Table<String, String> table = read(table path)

Table<String, Int> output =
table.MapFnl () .MapFnZ2 () .ReduceFn () ;

write (output)

J

58

Clicker Question!

59

Find the nhumber of unique documents that each word
occurs in?

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w in input.value () .split () {

emlt ((1nput.key (), w), 1)

}

}
def ReduceFnl: {

emit (input.key () [1], 1)
}

// sum the total counts
// of each word
def ReduceFn?2:{

sum = 0;
for (w, ¢) 1n 1nput{ sum += c; }
(w

14
emit (w, sum);

}

60

Find the nhumber of unique documents that each word

occurs in?

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w in input.value () .split () {

emlt ((1nput.key (), w), 1)

}

}
def ReduceFnl: {

emit (input.key () [1], 1)
}

// sum the total counts
// of each word
def ReduceFn?2:{

sum = 0;
for (w, c¢) 1n 1nput{ sum += c;
emit (w, sum);

}

}

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w 1n input.value () .split () {

}

}
def ReduceFnl: {

}

// sum the total counts
// of each word

def ReduceFn2: (S, I) -> (S, I){
sum = 0;
for (w, c¢) 1n input{ sum += c;
emit (w, sum):;

}

61

Clicker Question!

Find the humber of unique documents that each word
OCCurs in”?

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w 1n input.value () .split () {

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w in input.value () .split () {

} }
}

}
def ReduceFnl: { def ReduceFnl: {

}

}
// sum the total counts // sum the total counts
// of each word

// of each word
def ReduceFn2: { def ReduceFn2: (S, I) -> (S, I)/{
sum = 0; sum = 0;
for (w, ¢) 1n input{ sum += c; }

for (w, ¢) 1n 1nput{ sum += c; }
emit (w, sum);

Do these produce the same output?
(a)Yes:: (b) No

emit (w, sum):;

}

Clicker Question!

Find the humber of unique documents that each word
OCCurs in”?

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w 1n input.value () .split () {

// enumerate occurrences
// of each word with count of 1

def MapFnl: {
for w in input.value () .split () {

} }
}

}
def ReduceFnl: { def ReduceFnl: {

}

}
// sum the total counts // sum the total counts
// of each word

// of each word
def ReduceFn2: { def ReduceFn2: (S, I) -> (S, I)/{
sum = 0; sum = 0;
for (w, ¢) 1n input{ sum += c; }

for (w, ¢) 1n 1nput{ sum += c; }
emit (w, sum);

Do these produce thesame output?
(a)Yes:. . (b).No

emit (w, sum):;

}

Clicker Question!

Find the humber of unique documents that each word
OCCurs in”?

// enumerate occurrences // enumerate occurrences
// of each word with count of 1 // of each word with count of 1
def MapFnl: { def MapFnl: {

for w in input.value () .split () { for w 1n input.value () .split () {

} }
} }
def ReduceFnl: { def ReduceFnl: {

} }

// sum the total counts

// st

// of // of each word

def I def ReduceFn2: (S, I) -> (S, I){
sum sum = 0;
for ;) for (w, c¢) 1n input{ sum += c;
emit emit (w, sum):;

}

Do these produce thesame output?
(a)Yes:. . (b).No

}

Clicker Question!

Find the humber of unique documents that each word
OCCurs in”?

// enumerate occurrences // enumérate occurrences
// of each word with count of 1 // of each word with count of 1

def MapFnl: { def MapFnl: {
for w in input.value () .split () { ftor w in 1nput.value() .split () {

} }
} }
def ReduceFnl: { def ReduceFnl: {

} }

// sum the total counts

// st

// of // of each word

def [def ReduceFn2:(S, I) -> (S, I){
sum Sum = O0;
for ;) fox (w, c¢) 1n input{ sum += c;
emit emlitsw, sum):;

}

Do these produce the same output?
(a)Yes: . (b).No

}

Clicker Question!

ITnput K: V def ReduceFnl: (S, S) -> (S, I) {
Docl : here are some words for w 1n 1nput.value () {
Doc?2: words words words emit (w, 1)
Doc3: here are words }
}

det MapFnlf (S’ S) => (5, S) {. def ReduceFn2: (S, I) -> (S, I){

for w in input.value () .split () { sum = 0:

emit (input.key (), w) for (w, c¢) in input{
} sum += cC;

})

emit (w, sum);

}

What will this produce?

(a) here:2, are:2, some:1, words:2
(b) here:2, are:2, some:l, words:9
(c) here:l, are:]l, some:1, words:]

Clicker Question!

ITnput K: V def ReduceFnl: (S, S) -> (S, I) {
Docl : here are some words for w 1n 1nput.value () {
Doc?2: words words words emit (w, 1)
Doc3: here are words }
}

det MapFnlf (S’ S) => (5, S) {. def ReduceFn2: (S, I) -> (S, I){

for w in input.value () .split () { sum = 0:

emit (input.key (), w) for (w, c¢) in input{
} sum += cC;

})

emit (w, sum);

}

What will this produce?
(a) here:2, are:2, sowme:l, words:3
(b) here:2, are:2, some:l, words:%
(¢l here:l, are:l, some:1, words:]

Clicker Question!

Input K: V

Docl : here are some words
Doc2: words words words
Doc3: here are words

def MapFnl: (5, S5) -> (5, 8) def ReduceFn2: (S, I) -> (S, I){
for w in input.value () .split () { sum = O
emit (;W) for (w, c) in input{
} sum += cC;

} }

emit (w, sum);

o qrrurrenectduce!?

(a) here 2 are:2, some:l words:2
(b here:2, are:2, some:], words:9
(¢/ here:l, are:l, some:1, words:]

Other MapReduce
Functions

e Sort

* Unigque

e Sample

e [irst

o Filter

e Join

69

Other MapReduce
Functions

e Sort

* Unigque

e Sample

e [irst

o Filter

e Join

70

Other MapReduce

Functions
Sort
Unique » Joins are usually computed
“under the hood” by most MR
Sample implementations (like in SQL)
First e But you can imagine having to
| do them yourselt...
Filter

Join

71

Real Life Application

Real Life Application

s Charles Mingus a composer?’

Real Life Application

s Charles Mingus a composer?’

“Mingus is a composer’ S n

Real Life Application

s Charles Mingus a composer?’

“Mingus is a composer” S

Visions of Jazz: The First Century - Page 452 - Google Books Result
https://books.google.com/books?isbn=0199879532

Gary Giddins - 1998 - Music

If Mingus is a composer worthy of our attention, it must be because his melodies are one with his
voicings and scaffolding. Set adrift among Harry Partch's globes ...

Jazz: There's a Mingus a-Monk us, in The Abstract Truth - Daily Kos
www.dailykos.com/story/.../-Jazz-There-s-a-Mingus-a-Monk-us-in-The-Abstract-Trut... v
Mar 9, 2014 - Mingus is a composer and arranger. In fact a big band has been established which
performs in Manhattan every week in NYC that just plays ...

e — e EEE——_—__

75

Real Life Application

s Charles Mingus a 1950s American jazz composer”?’

“Mingus is a 1950s American jazz composer’ % n

No results found for "mingus is a 1950s american jazz composer”.

/6

Real Life Application

s Charles Mingus a 1950s American jazz composer?’

Real Life Application

ls Charles Mingus a 1950s American composer?

... It Mingus is a composer worthy of our
attention, It must be because...

Mingus dominated the scene back in the
1950s and 1960s.

Mingus was truly a product of America in all
its historic complexities...

A virtuoso bassist and composer, Mingus
irrevocably

78

rmo

Real Life Application

ComposerX
and 1960s.

ComposerX is a

Real Life Application

Subject Predicate
Barack Obama won
Kamala Lopez wrote
Charles Mingus wrote

Barack Obama opposed the appropriations bill

Barack Obama listens to

Object
the electoral vote
an op-ed for HuffPo
jazz

jazz

80

Category Entity
Person Barack Obama
Person Kamala Lopez
Person Charles Mingus

Huffington Post Columnists Barack Obama
Huffington Post Columnists Kamala Lopez
US Presidents Barack Obama

Jazz Composers Charles Mingus

Joins

Subject Predicate Object Category Entity
Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Desired output:

Subject Predicate Object Categories
Barack Obama won the electoral vote Pgrson, US_PresidentS_,
Huffinagton Post Columnists
Person,
Kamala Lopez wrote an op-ed for HuffPo Huffington_Post_Columnists,

81

Joins

Subject Predicate Object Category Entity
Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala [Lopez

US Presidents Barack Obama
Jazz Composers Charles Mingus

Desired output:

Subject Predicate Object Categories
Barack Obama won the electoral vote Pgrson, US_Presidentg,
Huffington Post Columnists
Kamala Lopez wrote an op-ed for HuffPo . Person, .
Huffington_Post_Columnists,

82

Joins

Facts Categories
Subject Predicate Object Category Entity

Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala Lopez
US Presidents Barack Obama

Jazz Composers Charles Mingus

Select * from Facts, Categories
Where Subject == Entity

83

Joins

Facts Categories
Subject Predicate Object Category Entity

Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala Lopez
US Presidents Barack Obama

Jazz Composers Charles Mingus

Select * from Facts, Categories
Where Subject == Entity
GroupBy Subject

84

Joins

Facts Categories
Subject Predicate Object Category Entity

Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala Lopez
US Presidents Barack Obama

Jazz Composers Charles Mingus

Select * from Facts, Categories
Where Subject == Entity
GroupBy Subject

|

Key: String
Value: (list of ((String, String, String), list of ((String, String))

85

Joins

Facts Categories
Subject Predicate Object Category Entity

Barack Obama won the electoral vote Person Barack Obama
Kamala Lopez wrote an op-ed for HuffPo Person Kamala Lopez
Charles Mingus wrote jazz Person Charles Mingus
Barack Obama opposed the appropriations bill Huffington Post Columnists Barack Obama
Barack Obama listens to jazz Huffington Post Columnists Kamala Lopez
US Presidents Barack Obama

Jazz Composers Charles Mingus

Select * from Facts, Categories
Where Subject == Entity
GroupBy Subject

l ‘EZMEE,?::?

Key: String
Value: (list of ((String, String, String), list of ((String, String))

86

Joins

Facts Categories

Predicate Object Category

won the electoral vote Person

wrote an op-ed for HuffPo Person

wrote jazz Person
opposed the appropriations bill Huffington Post Columnists
listens to jazz Huffington Post Columnists

US Presidents
Jazz Composers

Select * from Facts, Categories
Where Subject == Entity

Ai.i, %hé nf&&&s GroupBy Subject
for that entity l

Key: String
Value: (list of((String, String, String), list of ((String, String))

37

Joins

Facts Categories

Predicate Object Category

won the electoral vote Person

wrote an op-ed for HuffPo Person

wrote jazz Person
opposed the appropriations bill Huffington Post Columnists
listens to jazz Huffington Post Columnists

US Presidents
Jazz Composers

Select * from Facts, Categories A{_i_ Eh@_
Where Subject == Entity

GroupBy Subject cateqories for

l that entiky

Key: String
Value: (list of((String, String, String), list of((String, String))

88

Joins

// rekey table by entity
def MapFnl: (String, Obj) -> (String, O0bj) {
emit (1nput.value () .entity (), input.value())

J

// rekey table by subject
def MapFn2: (String, Obj) -> (String, Ob7j) {
emlt (1nput.value () .subject (), 1input.value())

J

// define your pipeline

def main () {
Table<String, Obj> cats = read(tablel path) .MapFnl ()

Table<String, Obj> facts = read(table2 path) .MapFn2 ()
output = cats.join(facts) .MapFn3(. .
l VAL mﬂtutj
Key: String

Value: (list of((String, String, String), list of((String, String))

89

DIC1 DICZ N D(icN

Mappers: (DoclD, Doc) -> (DoclD, Sent)

! ! !

Sent1 Sent? N SentM
ee—— Tne——— Tee———

! ! !

Mappers: (DoclD, Sent) -> (Word, Count)

S R

Word1 Word?2 WordK

| | |

Reducers: (Word, Count) -> Word, sum(Count)

v

Doc1

T

!

Doc?2

ﬁ

DocN

Mappers: (DoclD, Doc) -> (DoclD, Sent)

Clicker Question!

92

Doc1 Doc?2 DocN

! ! !

Mappers: (DoclD, Doc) -> (DoclD, Sent)

Clicker Question!

In the best-case scenario, how much
parallelization could we get here
(maximum number of mappers)?

(a) N
(b) log(N)
c) §

93

Doc1 Doc?2 DocN

! ! !

Mappers: (DoclD, Doc) -> (DoclD, Sent)

Clicker Question!

In the best-case scenario, how much
parallelization could we get here
(maximum number of mappers)?

(a) N
(b~ log(N)
c) §

94

Doc1 Doc?2 DocN
! ! !
Mappers: (DoclD, Doc) -> (DoclD, Sent)

} } !
Sent Sent?2 SentM
} ! !
Mappers: (DoclD, Sent) -> (Word, Count)

} } }
Clicker Question!

How about here?

(a) N
() M
(c) N*M v

Doc1 Doc?2 DocN
! ! !
Mappers: (DoclD, Doc) -> (DoclD, Sent)

} } !
Sent Sent?2 SentM
} ! !
Mappers: (DoclD, Sent) -> (Word, Count)

} } }
Clicker Question!

How about here?

(a). N
(h) M
€ N*M

Mappers: (DoclD, Doc) -> (DoclD, Sent)

} | |
Sent | Sent?2 SentM
! ! }
Mappers: (DoclD, Sent) -> (Word, Count)

} } |
Clicker Question!

How about here?

AR N Ma pping doesnt require
 , the same Lmtjs to route
~ N*M b0 the same machine,

Clicker Question!
Which is (likely to be) faster?

(a) (b)

Mapper1: Mapper:
(DoclD, Doc) -> (DoclID, Sent) (DoclID, Doc) -> (Word, Count)
Mapper?2: Reducer:
(DoclID, Sent) -> (Word, Count) (Word, Count) -> Word,
sum(Count)
Reducer:

(Word, Count) -> Word,

sum(Count) (O) They are fhe same

98

ce)

115

—

(a)

Mapper1:
(DoclID, Doc) -> (DoclD, Sent)

!

Mapper?:
(DoclD, Sent) -> (Word, Count)

!

Reducer:
(Word, Count) -> Word,
sum(Count)

99

ot f@“ Ma» ier Question!
- aien is (likely to be) faster?

(b)

Mapper:
(DoclD, Doc) ->

(Word, Count)

}

Reducer:
(Word, Count) -> Word,
sum(Count)

(¢) They are the same

Clicker Question!
Which is (likely to be) faster?

(a) (b)

Mapper1: Mapper:
(DoclD, Doc) -> (DoclID, Sent) (DoclID, Doc) -> (Word, Count)
Mapper?2: Reducer:
(DoclID, Sent) -> (Word, Count) (Word, Count) -> Word,
sum(Count)
Reducer:

(Word, Count) -> Word,

sum(Count) (O) They are fhe same

100

Clicker Question!
Which is (likely to be) faster?

(a) (b)

Mapper: Mapper:
(DoclD, Doc) -> (DoclID, Sent) (DoclD, Doc) -> (Word, Count)
Ma - Word,

(DoclD, Sent)

\

Reducer:
(Word, Count) -> Word,

sum(Count) (O) They are fhe same

101

Clicker Question!
Which is (likely to be) faster?

(a) (b)

Mapper1: Mapper:
(DoclD, Doc) -> (Deet” Sent) (DoclD, Doc) -> (Word, Count)

for sentence in doc:
l for word in sentence:
blah blah

!

Reducer:
(Word, Count) -> Word,
sum(Count)

AN 4 (¢) They are the same

102

(non)Clicker Question!

What wight be bad here?

v v v
Word1 Word?2 WordK
} } }

Reducers: (Word, Count) -> Word, sum(Count)

!

103

(non)Clicker Question!

What wight be bad here?

Skewed Key Pistributions!
(Need all values with the same key to be together,
so cant avtomatically load balance)

v v v
Word1 Word?2 WordK
} } }

Reducers: (Word, Count) -> Word, sum(Count)

!

104

Word Frequency

/Zipt's Law

Word Rank

105 https://en.wikipedia.org/wiki/Zipf%27s_law

Word Frequency

/Zipt's Law

he frequency of any word Is
inversely proportional to its rank in
the frequency table” (Wikipedia)

Word Rank

106 https://en.wikipedia.org/wiki/Zipf%27s_law

Word Frequency

- Zipt's Law
the = 7%

he frequency of any word Is
inversely proportional to its rank in
the frequency table” (Wikipedia)

Word Rank

107 https://en.wikipedia.org/wiki/Zipf%27s_law

Word Frequency

- Zipt's Law
the = 7%

of = 3.5%
f /

he frequency of any word Is
inversely proportional to its rank in
the frequency table” (Wikipedia)

Word Rank

108 https://en.wikipedia.org/wiki/Zipf%27s_law

Word Frequency

/Zipt's Law

The most frequent 0.2% of words
make up 50% of occurrences.

Word Rank

109

Real Life Application

Subject Predicate Object Categories
Barack Obama won the electoral vote Pgrson, US_PreS|dent§,
Huffington_Post_Columnists
Person,
Kamala Lopez wrote an op-ed for HuffPo | Huffington_Post_Columnists,
Actor
Predicate Object Category Score
Won the electoral vote US_Presidents 0.92
won the electoral vote Person 0.89
Welg the electoral vote Huffington Post Columnists 0.23
wrote an op-ed for HuffPo Huffington Post Columnists 0.99
wrote an op-ed for HuffPo Person 0.91

Real Life Application

Subject Predicate Object Categories
Barack Obama won the electoral vote Pgrson, US_PreS|dent§,
Huffington_Post_Columnists
Person,
Kamala Lopez wrote an op-ed for HuffPo | Huffington_Post_Columnists,
Actor
Predicate Object Category Score
won the electoral vote US_Presidents 702,345
won the electoral vote Person 812,485
Welg the electoral vote Huffington Post Columnists 24,571
wrote an op-ed for HuffPo Huffington Post Columnists 134,213
wrote an op-ed for HuffPo Person 136,091

-irst Attempt

Mapper:
(subject, predicate, object), list_of(categories) ->
category, (predicate, object)

! ! !

Reducerl: ..
category, list_of(predicate, object) ->
(category, predicate, object), 1

} } |

Reducer?:
(category, predicate, object), list_of(count) ->
(category, predicate, object), total

!

M2

-irst Attempt

Mapper1:
(subject poredicate, object), list_of(categories) ->
category, (predicate, object)

! ! !

Reducerl: ..
category, list_of(predicate, object) ->
(category, predicate, object), 1

} } |

Reducer?2:
(category, predicate, object), list_of(count) ->
(category, predicate, object), total

V

First Attempt

Subject predicate, object), list_of(categories) ->

MapperT:

category, (predicate, object)

— 2 7 4 - iy T, = -
o —_— T P O R e e T O O RPN o S il
- g - o
. TS B L]

.
T Rt S
o oo N

R Reducert: ..
category, list_of(predicate, object) ->
(category, predicate, object), 1
Every %u,pi.e hvolving a
(C >

“Person”) has to go through

single category (e.q.

Eh@. sO\MQJ 13"@.&%@@'!‘. .

-irst Attempt

MapperT:
subject predicate, object), list_of(categories) ->
category, (predicate, object)

! ! !

Reducerl: ..
category, list_of(predicate, object) ->
(category, predicate, object), 1

} } |

Reducer?2:
(category, predicate, object), list_of(count) ->
(category, predicate, object), total

V.

Eo 1¥
)
L
. g P 157
- N
. v S
' 4 Yotor
: 5, 2 ey
e
\ x*
\'o' K
. v
WK
5 | o
PN
» b L
\d g b ¥ ”..
“ l\.‘ . :L; i~ 'I. ‘.\.:
1‘-_ vyt) W
ool = |
N . L
LT B
& (g el ol s
,~:',V L% 5 5N
e L .
’ E‘.Y".?.“.{\r. AN
\ .
. J 809 %,
~ d - .’-.
5 3 'R AN
™ L. 5
s -~
'] "IA 4
~ e s -

AT r

~HALP Mapper1: FHALP

(subject, predicate, object), list_of(categories) ->
category, (predicate, object)

! ! !

Reducerl: ..
category, list_of(predicate, object) ->
(category, predicate, object), 1

} } |

Reducer?2: -
(category, predicate, object), list_of(count) -> 54
(category, predicate, object), total

v

So much better!

Mapperi:
(subject, predicate, object), list_of(categories) ->
(category, predicate, object), 1

Reducer?:
(category, predicate, object), list_of(count) ->
(category, predicate, object), total

!

™7

ok ok ok go go go.
enjoy the long weekend!

118

