NLP!!!

April 7, 2020
Data Science CSCI 1951A
Brown University Instructor: Ellie Pavlick
HTAs: Josh Levin, Diane Mutako, Sol Zitter

Announcements

- S/NC Option
- "Special Topics"
- Questions/Concerns?

Today

- "1990s NLP". ..i.e. counting words :)
- Bags-of-words, Preprocessing
- "Tools for working with text"
- No Machine Learning today
- More on Thursday...

Resources

- Tokenization, Tagging, Parsing, all sorts of fancy things
- NLTK: https://www.nltk.org/
- Spacy: https://spacy.io/

Ways you might use NLP

Ways you might use NLP

- You want to use text as a feature for some prediction task
- Classify sentiment in twitter, predict popularity of posts, track spread of articles/ideas across the country

Ways you might use NLP

- You want to use text as a feature for some prediction task
- Classify sentiment in twitter, predict popularity of posts, track spread of articles/ideas across the country
- You want to make predictions/test hypotheses about language itself
- Model changes in word use over time/across locations, find words that cause articles to be shared

Ways you might use NLP

- You want to use text as a feature for some prediction task
- Classify sentiment in twitter, predict popularity of posts, track spread of articles/ideas across the country
- You want to make predictions/test hypotheses about language itself
- Model changes in word use over time/across locations, find words that cause articles to be shared
- Clustering of text data
- In either of the above use cases
- Are these words similar, is this document similar to this query, are these documents similar to each other, etc...

Unit of analysis

- Characters ("s" "w" "i" "m" "m" "i" "n" "g" "l" "y")
- Morphemes ("swim" "ing" "ly")
- Words ("swimmingly")
- Sentences ("remote instruction is going swimmingly")
- Documents ("Remote instruction is going swimmingly. Yesterday, for example, a student said...")

Compositionality

"meaning of the whole is a function of a meaning of the parts and the way in which they are combined"

Compositionality

Words

Compositionality

Sentences
$\overbrace{\text { Words }}$

Compositionality

Sentences $=f($ Words, Syntax $)$
$\uparrow_{\text {Words }}$

Compositionality

Documents $=\mathrm{f}($ Sentences, Discourse)

Sentences $=\mathrm{f}($ Words, Syntax $)$

$\uparrow_{\text {Words }}$

.. .to achieve
Documents $=f($ Sentences, Discourse $)$
Sentences $=f($ Words, Syntax $)$
$\uparrow_{\text {Words }}$
very difficiult..
(imposibibe?) positionality
.. to achieve
Documents $=f($ Sentences, Discourse $)$
Sentences $=f($ Words, Syntax $)$
$\uparrow_{\text {Words }}$
horse shoes \approx alligator shoes?

Unit of analysis

- Characters
- Morphemes
- Words
- Sentences
- Documents

Today

- Characters
- Morphemes
- Words
- Sentences
- Documents

Today

- Characters
- Morphemes
- Words
- Sentences
- Documents (We often Ereak sentences just like short documents, though)

"Bag of Words" (BOW)

"Bag of Words" (BOW)

- Represent sentences/documents as just an unordered set of words

"Bag of Words" (BOW)

- Represent sentences/documents as just an unordered set of words
- Basis of most of modern NLP
- Information Retrieval/Search
- Clustering/Recommendation
- As input to most ML models

"Bag of Words" (BOW)

- Represent sentences/documents as just an unordered set of words
- Basis of most of modern NLP
- Information Retrieval/Search
- Clustering/Recommendation
- As input to most ML models
- Changing a bit for sentences, but not for documents (yet)

"Bag of Words" (BOW)

Is it ok to copy and paste the data into javascript, or is there a filereader that can open a local file?

Changes I make to the nations.js file do not affect any of the html in after I load the nations.html file

When I try to display dots from part 2 on my mac (tried chrome, firefox, and safari), nothing is displayed (and the elements do not appear in the html).

"Bag of Words" (BOW)

Is it ok to copy and paste the data into javascript, or is there a filereader that can open a local file?

"Bag of Words" (BOW)

Is it ok to copy and paste the data into javascript, or is there a filereader that can open a local file?
"one hot"

1	1	1	1	1	0	0	1	0
.	\pm	ช	$\begin{aligned} & \bar{o} \\ & \stackrel{C}{\sigma} \end{aligned}$	$\frac{\overparen{0}}{0}$		ค	0 0 0 0 0	0 0 0 0 0 0

"Bag of Words" (BOW)

Is it ok to copy and paste the data into javascript, or is there a filereader that can open a local file?
counts/frequencies

2	1	2	1	1	0	0	1	0
.0)	\pm	ఠ	$\stackrel{\rightharpoonup}{\square}$ $\stackrel{\rightharpoonup}{\sigma}$	$\frac{7}{0}$		3	$$	0 0 0 0 0 1

"Bag of Words" (BOW)

doc 1	0	\pm	ธ	$\begin{aligned} & \bar{o} \\ & \stackrel{\Gamma}{\sigma} \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{0}}{0}$			$\begin{aligned} & 3 \\ & \frac{3}{0} \\ & 0 . \end{aligned}$	$$	0 0 0 1 0
	1	1	2	1	0		2	1	0	0
doc 2	3	1	4	0	0		1	2	0	1
doc 3	2	1	2	1	1		0	0	1	0

"Bag of Words" (BOW)

"Term Document Matrix"

"Bag of Words" (BOW)

doc 1	0	\pm	σ	$\frac{\bar{\sigma}}{\frac{\square}{\sigma}}$	$\frac{\mathrm{O}}{\mathrm{O}}$		$\begin{aligned} & \varrho \\ & \frac{0}{0} \\ & \frac{Y}{\bar{\sigma}} \\ & \underline{E} \end{aligned}$	$\begin{aligned} & 3 \\ & \frac{3}{0} \\ & \hline 0 \end{aligned}$	0 0 0 0 0	0 0 0 8 1
	1	1	2	1	0		2	1	0	0
doc 2	3	1	4	0	0		1	2	0	1
doc 3	2	1	2	1	1		0	0	1	0

How similar are document 1 and document 2?

Similarity Metrics

Similarity Metrics

- Edit Distance: Minimal number of edits (inserts, deletes, substitutions) needed to transform string 1 into string 2.

Similarity Metrics

- Edit Distance: Minimal number of edits (inserts, deletes, substitutions) needed to transform string 1 into string 2.

Thoughts?

Similarity Metrics

- Edit Distance: Minimal number of edits (inserts, deletes, substitutions) needed to transform string 1 into string 2.
- Jaccard Similarity: words in common / total words

Clicker Question!

Clicker Question!

Query html does not work
When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file

Which document is more relevant to the query, according to Jaccard?

$$
\begin{aligned}
& J(A, B)=\frac{|A \cap B|}{|A \cup B|} \\
& \text { a) The first one } \\
& \text { b) The second one } \\
& \text { c) Yes }
\end{aligned}
$$

Clicker Question!

Query html does not work
When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file

Which document is more relevant to the query, according to Jaccard?

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

a) The first one
b) The second one
c) Yes
assume one-hot (frequency doesut matter), ignore case/ punctuation

Clicker Question!

Query html does not work

When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file

Which document is more relevant to the query, according to Jaccard?

$$
\begin{aligned}
& J(A, B)=\frac{|A \cap B|}{|A \cup B|} \\
& \text { a) The first one } \\
& \text { b) The second one } \\
& \text { c) Yes }
\end{aligned}
$$

Clicker Question!

Query html does not work

When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file
$2 /(4+17)=0.095$ nt is more relevant to the query, cording to Jaccard?

$$
\begin{aligned}
& J(A, B)=\frac{|A \cap B|}{|A \cup B|} \\
& \text { a) The first one } \\
& \text { b) The second one } \\
& \text { c) Yes }
\end{aligned}
$$

Clicker Question!

Query html does not work

When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file
$2 /(4+17)=0.095$ nt is more relevant to the query,
$2 /(4+18)=0.091$ cording to Jaccard?

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

a) The first one
b) The second one
c) Yes

Clicker Question!

Query html does not work

When I try to display dots from part 2 the elements do not appear in the html.

Changes I make do not affect any of the html in after I load the nations html file
$2 /(4+17)=0.095$ nt is more relevant to the query,
$2 /(4+18)=0.091$ cording to Jaccard?

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

a) The first one i) The second one
c) Yes

Similarity Metrics

- Edit Distance: Minimal number of edits (inserts, deletes, substitutions) needed to transform string 1 into string 2.
- Jaccard Similarity: words in common / total words
- Cosine Similarity: by far the most popular metric

Cosine Similarity

Cosine Similarity

Cosine Similarity

Clicker Question!

									©
	$\underset{\text { 듣 }}{\bar{E}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \frac{y}{2} \\ & 3 \end{aligned}$	$\stackrel{\sim}{\sigma}$	$\bar{\sim}$	$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 0 \\ & 3 \end{aligned}$.0)	0 0 0
query	1	1	1	1	1	1	0	0	0
doc 1	1	1	0	0	0	1	1	1	1
doc 2	1	1	0	1	0	0	1	0	0

Which document is more relevant to the query, according to cosine?

$$
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}
$$

	Clicker Question!								
	$\underset{\substack{\xi \\ \hline}}{ }$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\begin{aligned} & \frac{y}{\vdots} \\ & \vdots \end{aligned}$	$\stackrel{\sim}{\sigma}$	$\overline{\bar{\sigma}}$	10 0 0 0 3	. 0	
query	1	1	1	1	1	1	0	0	0
doc 1	1	1	0	0	0	1	1	1	1
doc 2	1	1	0	1	0	0	1	0	0
$3 /(\sqrt{6} \sqrt{6})=0.5$									

Which document is more releva according to cosin

$$
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}
$$

Which document is more releva
$3 /(\sqrt{6 \sqrt{6}})=0.5$ according to cosin $3 /(\sqrt{6} \sqrt{4})=0.6$

a) docl
 b) doc2

$$
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}
$$

Which document is more releva
$3 /(\sqrt{6 \sqrt{6}})=0.5$ according to covin $3 /(\sqrt{6} \sqrt{4})=0.6$

$$
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}
$$

Linguistic Preprocessing

Linguistic Preprocessing

Language is ambiguous

Linguistic Preprocessing

Language is ambiguous

They freaked out when they found the bug in their apartment.

Linguistic Preprocessing

Language is ambiguous

They freaked out when they found the bug in their apartment.

Linguistic Preprocessing

Language is ambiguous

They freaked out when they found the bug in their apartment.

They've always been terrified of anything crawly.

Linguistic Preprocessing

Language is ambiguous

They freaked out when they found the bug in their apartment.
They ran back the CIT right away to tell everyone they'd finally figured it out.

Linguistic Preprocessing

Language is ambiguous but also redundant

They freaked out when they found the problem in their apartment.
They ran back the CIT right away to tell everyone they'd finally figured it out.

Linguistic Preprocessing

Constant Tradeoff

Linguistic Preprocessing

Constant Tradeoff

Collapse!
Try to treat
more words as
though they are
the same

Linguistic Preprocessing

Constant Tradeoff

Collapse!
Try to treat more words as
though they are
the same

Differentiate!
Try to preserve as much differences/
nuance as
possible

Linguistic Preprocessing

Constant Tradeoff

Collapse!
Try to treat more words as
though they are
the same

Differentiate!
Try to preserve as much differences/
nuance as
possible

normalization, stemming
tagging, collocations

Linguistic Preprocessing

Linguistic Preprocessing

I am trying to display dots from Part 2 on my mac (tried Chrome, Firefox, and Safari), but nothing is displayed (and the elements do not appear in the html).

I am trying to display dots from Part 2 on my mac (tried Chrome, Firefox, and Safari), but nothing is displayed (and the elements do not appear in the html).

- Tokenization (Phrasal Collocations/Morphological Analysis?)

I am trying to display dots from Part 2 on my mac (tried Chrome , Firefox, and Safari), but nothing is displayed (and the elements do not appear in the html).

- Tokenization (Phrasal Collocations/Morphological Analysis?)

I am trying to display dots from Part 2 on my mac（ tried Chrome， Firefox，and Safari ），but nothing is displayed（ and the elements do not appear in the html ）．
－Tokenization（Phrasal Collocations／Morphological Analysis？）

日文章魚怎麼說？

＂How to say octopus in Japanese？＂

I am trying to display dots from Part 2 on my mac（ tried Chrome， Firefox，and Safari ），but nothing is displayed（ and the elements do not appear in the html ）．
－Tokenization（Phrasal Collocations／Morphological Analysis？）

```
日文章魚怎麼說？
＂How to say octopus in Japanese？＂
```

日文 章魚 怎麼 說 ？
Japanese octopus how say ？

I am trying to display dots from Part 2 on my mac tried Chrome Firefox and Safari but nothing is displayed and the elements do not appear in the html

- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
i am trying to display dots from part 2 on my mac tried chrome firefox and safari but nothing is displayed and the elements do not appear in the html
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
i be try to display dot from part 2 on my mac try chrome firefox and safari but nothing be display and the element do not appear in the html
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
i be try to display dot from part <NUM> on my mac try chrome firefox and safari but nothing be display and the element do not appear in the html
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
try display dot part <NUM> mac try chrome firefox safari nothing display element not appear html
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
- Stop words — "pb and jelly" vs. "pb or jelly"
try_VB display_VB dot_NN part_NN <NUM>_NUM mac_NNP try_VB chrome_NNP firefox_NNP safari_NNP nothing_DT display_VB element_NNP not_RB appear_VB html_NN
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
- Stop words - "pb and jelly" vs. "pb or jelly"
- Tagging - "fish fish fish fish fish"
try_VB display_VB dot_NN part_NN <NUM>_NUM mac_NNP try_VB chrome_NNP <OOV> <OOV> nothing_DT display_VB element_NNP not_RB appear_VB html_NN
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
- Stop words - "pb and jelly" vs. "pb or jelly"
- Tagging - "fish fish fish fish fish"
- Remove out-of-vocabulary (OOV)
try_VB display_VB dot_NN part_NN <NUM>_NUM mac_NNP try_VB chrome_NNP <OOV> <OOV> nothing_DT display_VB element_NNP not_RB appear_VB html_NN
- Tokenization (Phrasal Collocations/Morphological Analysis?)
- Punctuation - "okay..." vs. "okay!"
- Normalization - "Trump" vs. "trump"
- Stop words - "pb and jelly" vs. "pb or jelly"
- Tagging - "fish fish fish fish fish"
- Remove out-of-vocabulary (OOV)

Choosing a vocabulary
 (what goes on the columns)

- Remove frequent words? ("stop words")
- Remove rare words? (unlikely to appear in test)
- Remove uninteresting words? (tf-idf? pmi?)
- Try to add a little syntax? (POS tags? ngrams? pmi?)

Choosing a vocabulary
 (what goes on the columns)

- Remove frequent words? ("stop words")
- Remove rare words? (unlikely to appear in test)
- Remove uninteresting words? (tf-idi? pmi?)
- Try to add a little syntax? (POS tags? ngrams?

Zipf's Law

Zipf's Law

Word Rank

Zipf's Law

Word Rank

Zipf's Law

Choosing a vocabulary
 (what goes on the columns)

- Remove frequent words? ("stop words")
- Remove rare words? (unlikely to appear in test)
- Remove uninteresting words? (tf-idf? pmi?)
\square pmi?)

Zipf's Law

Zipf's Law

seems arbilrary? that's cause it is.

Word Rank

Choosing a vocabulary
 (what goes on the columns)

- Remove frequent words? ("stop words")
- Remove rare words? (unlikely to appear in test)
- Remove uninteresting words? (tf-idf? pmi?)

Try to add a little syntax? (POS tags? ngrams? pmi?)

Tf-ldf

- Term-Frequency Inverse-Document-Frequency
- Assigns higher weights to words that differentiate this document from other documents
- tf-idf(word, doc) = (\# times word appears in doc) / (\# of times word appears across all documents)
- Can filter out low tf-idf words or else just reweight the term-document matrix accordingly

Clicker Question!

Clicker Question!

doc1
doc 2
doc 3
html does work. all webdev is awesome.
webdev: html does work
html does not work

doc 1	$\begin{array}{ll} \bar{E} & 0 \\ \vdots & 0 \\ \perp & 0 \end{array}$		$\stackrel{+}{\bigcirc}$	$\begin{aligned} & \frac{Y}{\grave{O}} \\ & 3 \end{aligned}$	$\stackrel{\sim}{\sigma}$	σ	$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$		
	1	1	1	1	1	1	0	0	0
doc 2	1	1	0	0	0	1	1	1	1
doc 3	1	1	0	1	0	0	1	0	0

doc 3
webdev: html does work

Clicker Question!
 doc 2

html does work. all webdev is awesome.
html does not work

What is the tf-idf vector for doc1
a)
b)
c)

$1 / 3$	$1 / 3$	1	$1 / 3$	0	$1 / 2$	1	0	1
$1 / 2$	$1 / 3$	1	$1 / 3$	1	$1 / 2$	0	$1 / 2$	1
$1 / 3$	$1 / 3$	1	$1 / 2_{89}$	1	$1 / 2$	0	0	0

Clicker Question!

html does not work
doc1
doc 2 doc 3
html does work. all webdev is awesome.

webdev: html
© does work
df
does: 3 not: 1
work: 2 at: 1
all: 2
webdev: 2
What is the tf-idf vector for doc1 is: 1
awesome: 1
a)
b)
c)

$1 / 3$	$1 / 3$	1	$1 / 3$	0	$1 / 2$	1	0	1
$1 / 2$	$1 / 3$	1	$1 / 3$	1	$1 / 2$	0	$1 / 2$	1
$1 / 3$	$1 / 3$	1	$1 / 2$	90	1	$1 / 2$	0	0

Clicker Question!

html does not work
doc1
doc 2
doc 3
html does work. all webdev is awesome.

doc1	1	1	1	1	1	1	0	0	0
doc 2	1	1	0	0	0	1	1	1	1
doc 3	1	1	0	1	0	0	1	0	0

df
html: 3
does: 3 not: 1
work: 2
at: 1
all: 2
webdev: 2
What is the tf-idf vector for doc 1 is: 1
awesome: 1
a)
b)
c)

$1 / 3$	$1 / 3$	1	$1 / 3$	0	$1 / 2$	1	0	1
$1 / 2$	$1 / 3$	1	$1 / 3$	1	$1 / 2$	0	$1 / 2$	1
$1 / 3$	$1 / 3$	1	$1 / 2$	1	1	$1 / 2$	0	0

PMI

- Pointwise Mutual Information
- Again: assigns higher weights to words that differentiate this document from other documents
- $\operatorname{PMI}($ word,doc $)=\log P(w o r d \mid d o c) / P(w o r d)$
- Used more for finding word-label relationships or word-word collocations (more info in two seconds)

Choosing a vocabulary
 (what goes on the columns)

- Remove frequent words? ("stop words")
- Remove rare words? (unlikely to appear in test)
- Remove uninteresting words? (tf-idf? pmi?)
- Try to add a little syntax? (POS tags? ngrams? pmi?)

N-Grams

- N-length sequence of words (unigrams, bigrams, trigrams, 4-grams, ...)
- Provides some context (differentiating "cute dog" from "hot dog")
- Blows up size of vocabulary, increases sparsity

N-Grams

html does work . all webdev is awesome.

1gms: ['html', 'does', 'work', ‘.', 'all', ...]
2gms: ['html does', 'does work', 'work .', '. all', ...]
3gms: ['html does work', 'does work .', 'work . all', ...]
skip-gms: ['html does’, 'html work', 'does html', 'does work', 'does .', ...]

Collocations

- Try to find just the interesting phrases (e.g. hot dog) by finding words that occur together above chance
- Often use PMI for this

Topic Models

Can you elaborate on exactly what the directions are in part 2 step 3, the stencil code does not quite imply what we are supposed to do...

When I try to display dots from part 2 on my mac (tried chrome, firefox, and safari), the elements do not appear in the html.

Changes I make to the nations.js file do not affect any of the html in after I load the nations.html file

Topic Models

Can you elaborate on exactly what the directions are in part 2 step 3, the stencil code does not quite imply what we are supposed to do...

When I try to display dots from part 2 on my mac (tried chrome, firefox, and safari), the elements do not appear in the html.

Changes I make to the nations.js file do not affect any of the html in after I load the nations.html file
instructions: stencil, instructions, part, step, rubric, handin... UI: html, javascript, debug, display, elements... systems: mac, windows, linux, chrome, firefox, os... fillers: I, you, when, the, and, a

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin... UI: html, javascript, debug, display, elements... systems: mac, windows, linux, chrome, firefox, os...
fillers: I, you, when, the, and, a

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin.. Ul: html, javascript, debug, display, elements. systems: mac, windows, linux, chrome, firefox, os.
fillers: I, you, when, the, and, a

1. Sample a topic

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin.. Ul: html, javascript, debug, display, elements. systems: mac, windows, linux, chrome, firefox, os
fillers: I, you, when, the, and, a

You
2. Sample a word from that topic

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin.. Ul: html, javascript, debug, display, elements...
systems: mac, windows, linux, chrome, firefox, os.
fillers: I, you, when, the, and, a

You

1. Sample a topic

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin.. Ul: html, javascript, debug, display, elements... systems: mac, windows, linux, chrome, firefox, os fillers: I, you, when, the, and, a

You javascript

2. Sample a word from that topic

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin...
Ul: html, javascript, debug, display, elements
systems: mac, windows, linux, chrome, firefox, os.
fillers: I, you, when, the, and, a

You javascript

1. Sample a topic

Topic Models

Where do documents come from? "The generative story"
instructions: stencil, instructions, part, step, rubric, handin...
Ul: html, javascript, debug, display, elements
systems: mac, windows, linux, chrome, firefox, os.
fillers: I, you, when, the, and, a

You javascript handin
2. Sample a word from that topic

Topic Models

"Latent Semantic Analysis" (LSA)

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

Topic Models

"Latent Semantic Analysis" (LSA)

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

"latent" variable (not observed)

Topic Models

"Latent Semantic Analysis" (LSA)

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

words are determined by topic (and are conditionally independent of each other)

Topic Models

"Latent Semantic Analysis" (LSA)

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

documents are a distribution over topics

Topic Models

"Latent Semantic Analysis" (LSA)

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

set parameters to maximize probability of observations

Topic Models

part 2 html does not work

Topic Models

Topic Models

Clicker Question!

Clicker Question!

Which is the best parameter setting for the observed data?
$P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)$
part <NUM> html does not work

(b)

Clicker Question!

$$
\text { a: }(0.3+0.2+0+0.1+0.1+0.2) \times 0.5
$$

part <NUM> html does not work

(b)

Clicker Question!

$$
\begin{array}{r}
a:(0.3+0.2+0+0.1+0.1+0.2) \times 0.5 \\
(0+0.3+0.4+0.1+0.2) \times 0.5
\end{array}
$$

part <NUM> html does not work

(b)

Clicker Question!

$$
\begin{array}{r}
\mathrm{a}:(0.3+0.2+0+0.1+0.1+0.2) \times 0.5 \\
(0+0.3+0.4+0.1+0.2) \times 0.5 \\
=0.45+0.5 \\
=0.95
\end{array}
$$

part <NUM> html does not work

(b)

Clicker Question!

$$
\text { b: } \begin{array}{r}
(0.3+0.2+0+0.1+0.1+0.2) \times 0.33 \\
(0+0.3+0.4+0.1+0.2) \times 0.67 \\
=0.297+0.67 \\
=0.967
\end{array}
$$

part <NUM> html does not work

(b)

Topic Models

the cong pariiress ame												
doc1	11	1	1	10	C Models							
doc2	c2	0	1	-								
doc3	c3 1	1	0	10	document $=$ distribution over topics							
	c4 1	0	1	0								
						$\begin{aligned} & \text { the cong parlia } \\ & \text { ress ment } \end{aligned}$						
d1 -0.	0.60-0.39	0.70	00.00	3.06	\|0.00	0.000 .00	0.00 0.00	-0.65	-0.34	-0.51	-0.34	-0.31
d2 --0.	0.480 .50	-0. -12	12-0.71	0.00	1.81	10.000 .00	0.00 0.00	0.02	-0.54	0.34	-0.54	0.56
d3 --.	0.43--.58	8-0.69	-69 0.00	0.00	0.00	0.570 .00	0.000 .00	-0.42	0.02	0.79	0.02	-0.44
	0.480 .50	-0.12	120.71	0.00	0.00	0.000 .0	0.000 .00	-0.63	0.27	0.00	0.37	63
								-0.04	0.73	0.00	-0.88	0.04
		U				D				V		

k bye

