Overfitting anao
Regularization

March 31, 2020
Data Science CSCI 1951A
Brown University

Instructor: Ellie Pavlick
HTAs: Josh Levin, Diane Mutako, Sol Zitter

Announcements

e Office Hours—watch calendar
ML assignment out later today

* Analysis project deliverable out soon

logay

* Qvertitting and Regularization

Train/Test Splits

* By definition, trained models are minimizing their
objective for the data they see, but not for the data
they don't see

 What we really care about is how the model does
on data we don't see

* SO we split our training data into disjoin sets—a
train set and a test set—and assess performance
on test given parameters set using train.

Train/Test Splits

Train/Test Splits

Train

N ‘ ‘
~
~

Train/Test Splits

~

MSE = &

Train/Test Splits

~

Train/Test Splits

~

MSE = 12

Train/Test Splits

Problem qels worse as models get
more powerful/flexible

MSE. = 4

10

Train/Test Splits

Problem qels worse as models get
more powerful/flexible

MSE = 14

11

Cross Validation

e Some train/test splits are harder than others

* Jo get a more stable estimate of test
performance, we can use cross validation

accs = |[]

for 1 1n range(num folds):
train, test = random.split (data)
clf.fit(train)
accs.append(clf.score(test))

Overfitting

* Models are likely to overtfit when the model is more
‘complex” than is needed to explain the variation
we care about

 "Complex” generally means the number of
parameters (i.e. features) is high

 When the number of parameters is >= the number
of observations, you can trivially memorize your
training data, often without learning anything
generalizable to test time

Regularization

Incur a cost for including more features (more non-zero
weights), or for assuming features are very important (more
higher weights)

Or “early stopping”—for iterative training procedures (i.e.
gradient descent) stop before the model has fully converged
(i.e. you assume the final steps are spent memorizing noise)

By definition regularization will make your model worse
during training...

But hopefully better at test (which is what you really care
about)

Regularization

ming (loss(x; 0) + Acost(0))

 Adds an extra "hyperparameter” which controls
how much you penalize

Dev/Validation Sets

e Often you need to make meta-decisions (not just set the
parameters), E.g.

* Which model is better (i.e. generalizes better to held out data)?
* What regularization to use”
* How many training iterations?

* Do do this, you have to split into train/dev/test, not just train/dev. If
you use test to set these parameters, you are “peaking” at unseen
data in order to fit the model, and thus test performance is no
longer actually representative of how you would do in the real
world

Norms

e L1 norm: [= Z ;) encourages sparsity

e | 2norm: [, = \/Z x,? more stable

e Lpnorm: [, = §/z::v?f

Norms

Linear Regression — No regularization
- 2
mmw((y —w - x)°)

Lasso Regression — Linear regression with L1 penalty on the loss

ming ((y — w - z)* + AN (w))

Ridge Regression— Linear regression with L2 penalty on the loss

ming ((y — w - z)* + Az (w))

Logistic Regression usually uses |1 or 12 regularization by default (e.g. in
sklearn)

Feature Selection

* Explicitly remove features from model before training
* Lots of heuristic techniques (no magic solutions, requires trial and error)
* Some techniques:
* Remove correlated features
 Remove low-variance features
 |teratively add features with highest weight or information gain
 |teratively remove features with lowest weight or information gain

* Dimensionality Reduction (e.g. SVD, which you are all experts in now)

