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 (Generative vs. Discriminative Models
* KNN, Nalve Bayes, Logistic Regression

e SciKit Learn Demo



Supervised vs.
Unsupervised Learning

o Supervised: Explicit data labels
e Sentiment analysis—review text -> star ratings
* |Image tagging—image -> caption

* Unsupervised: No explicit labels
» Clustering—find groups similar customers

 Dimensionality Reduction—find features that
differentiate individuals
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Classification

One Goal: P(Y|X)

P(email is spam | words in the message)
P(genre of song|tempo, harmony, lyrics...)
P(article clicked | title, font, photo...)
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K Nearest Neighbors

Arguably the simplest ML algorithm

"‘Non-Parametric” — no assumptions about the
form of the classitication model

All the work Is done at classification time

Works with tiny amounts of training data (single
example per class)

The best classification model ever???



Supervised Classification

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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Crenerakive Models

Diseriminakive Models

estimate P(X, Y) first

Can assign probability to
observations, generate
new observations

Often more parameters,
but more flexible

, Bayes
Nets, VAEs, GANS

estimate P(Y | X) directly
/no explicit probability model

Only supports
classification,
less flexible

Often fewer parameters, better
oerformance on small data

SVMs, Perceptrons
KNN
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Supervised Classification
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Bayes Rule

Label lovely good raw rubbery rather mushroomy gamy ...

1 1 1 0 0 0 0 0

P(Y=1|lovely, good,...)

=P(lovely, good,...|Y=1)P(Y=1)

=P(Y=1, lovely, good,...)

P(lovely|Y=1, good,...)P(Y=1, good,...)
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Bayes Rule
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Nalve Bayes

Label lovely good raw rubbery

1 1 1 0 0
P(Clxq, X2, ..., Xk)
=3(X1 X2, ..., Xk, C)D(XZ‘X(B, .

rather mushroomy gamy

0

., XK, C)

0

°(Xk|C)

Assume features are independent!

0




Nalve Bayes

Label lovely good

1

raw rubbery rather mushroomy gamy ...

1 1 0 0 0
1, X2, ..., Xk)
X2, ..., Xk, C)P(X2o|Xz, ..., Xk, C)...
C)P(x2|C)...P(xx|C)P(C)

0

°(Xk|C)

Assume features are independent!

0




Lovely mushroomy nose and good length.

Nalve Bayes
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Clicker Question!

Lovely mushroomy nose and good length. 1 Quite raw finish. A bit rubbery.
R R S—esccammsteNRpGT
Gamy, succulent tannins. Lovely. 1 Good if not dramatic fizz. 0

I ——— ——ctmmmeteRmONT s T —ta_—
Provence herbs, creamy, lovely. 1 Rubbery - rather oxidised. 0

R Y = AN

X P(x|Y=1) P(x|Y=0)
good fol foll

(2)1.0, 0.0
(b)1/2, 1/2
(c) 1/3 1/3

0



Lovely mushroomy nose an{l good Jength.

Gamy, succulent tannins. Lovel. 1
B e TSt

Clicker Question!

Provence herbs, creamy, lovely.

R

1 the raw finish. A bit rubbery.

not dramatic fizz. 0O

W

1 Rubbery rather oxidised. O

R e —
X P(x|Y=1) P(x|Y=0)
good 1/3 1/3

(a)1.0, 0.0
bl 1/2, 1/2

(e) 1/3 1/3

0



Nalve Bayes

Quite mushroomy, a bit dramatic. 7?7

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
olli 0.2 0.4
dramatic 0.6 0.4
gamy 0.1 0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2

guite 0.7 0.8



Nalve Bayes

Quite mushroomy, a bit dramatic. ??7?

D W

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
it 0.2 0.4
dramatic 0.6 0.4
am 0.1 0.0
goog 0.2 0.2 Whaf dO we
lovely 0.5 0.1 do now?
mushroomy 0.2 0.2

guite 0.7 0.8
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Nalve Bayes

Quite mushroomy, a bit dramatic. 77?7

X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
0.4
0.4
0.0
good 0.2 0.2
lovely 0.5 0.1
mushroomy 0.2 0.2
guite 0.7 0.8

= P(X]Y)P(Y)
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X P(x|Y=1) P(x|Y=0)
a 0.9 0.9
bit 0.2 0.4
dramatic 0.6 0.4 P(Y=1) P(Y=0)
gamy 0.1 0.0 0.3 0.7
good 0.2 0.2
lovely 0.5 0.1 _
mushroomy 0.2 0.2 Quite mushroomy, a
quite 0.7 0.8 bit dramatic. 7?77

0.9x0.2x0.6x0.2x0.7x0.3=0.005
0.9x04x04x0.2x0.8x0.7=0.016

(a) Positive
 (b) Negative
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Linear Regression

n

minimize Z(YL — Y)Q

1=1

81



| ogistic Regression

A

minimize —log P(Y'|Y')

32
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minimize —YlogY + (1 — Y)log(1 —Y)
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L ogistic Regression

Naive Bajes

X P(x|Y=1)
a 0.9
pit 0.2
dramatic 0.6
gamy 0.1
good 0.2
lovely 0.5

Mushroo 0.2
guite 0.7



L ogistic Regression

Logistic Regression

X 770

a 0.9

bit 0.4
dramatic 1.0
gamy 0.7
good 0.2
lovely 0.4

mushroom 0.8
guite 0.7



Clicker Question!

WTF does this mean?

There is a 1.0 probability of
(a) P Y

Logistic Regression

X observing “dramatic” given Y = 1
d
bit ooty (b) There is a 1.0 probability that Y =
dramatic { 1.0 } 1 given we observe “dramatic”
gamy ‘ 1 is the co-efficient on the
good (c) “dramatic” variable in the best fit
lovely linear regression.

mushroom 0.8 1 Is the co-efficient on the “dramatic”

quite 0.7 (d) variable in linear regression that
minimizes the log loss.
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There is a 1.0 probability of
(a) P Y

Logistic Regression

X observing “dramatic” given Y = 1
d
bit ooty (b) There is a 1.0 probability that Y =
dramatic { 1.0 } 1 given we observe “dramatic”
gamy ‘ 1 is the co-efficient on the
good (c) “dramatic” variable in the best fit
lovely linear regression.

mushroom 0.8 1\s the co-efficient on the “dramatic”
quite 0.7 (d) variable in linear regression that
Ainimizes the log loss.
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hgistic Regression

What do we
do now?
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Code-along!

irom skleam.linear_modlel oot Logistichegression

99



