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Waitlist

• If you are not registered, make sure you are on the 
waitlist (link is on course webpage) 

• We have a *little* wiggle room in the enrollment cap 

• We will prioritize fairly (i.e. graduating and need 
this to graduate > graduating > not graduating…)
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Moneyball!

https://en.wikipedia.org/wiki/Moneyball



Obama 
Campaign

http://crowdsourcing-class.org/slides/ab-testing.pdf



Google’s  
“40 Shades 

of Blue”

Why Google has 200m reasons to put engineers over designers. The Gaurdian. 
The Origin of A/B Testing. Nicolai Kramer Jakobsen. 
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The Scientific Method

https://en.wikipedia.org/wiki/Scientific_method
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Data “Science”

https://www.dailydot.com/unclick/state-googled-2017 
http://nerdgeeks.co/us-state-words-map
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https://www.dailydot.com/unclick/state-googled-2017 
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Natalie Delworth



Data “Science”
So many maps!

https://xkcd.com/1845/



Data “Science”
• To be fair… 

• Intuition plays a huge role in the scientific method (“make 
observations” is Step 1). 

• Exploratory analysis is necessary, its okay to not be all rigor all 
the time 

• But! 

• Exploratory analysis (even when it involves the biggest of data) 
is meant to *form* a hypothesis, not test one 

• Good experimental design and rigorous statistics are essential if 
we want to make claims about how the world works
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Facebook posts by age group

13-18

19-22

23-29

30-65

Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. 
Schwartz et al. (2013).

“Eyeballing it”
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Frequent topics observed in 17,000 Science articles
Probabilistic Topic Models. Blei (2012).

“Eyeballing it”
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Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:

An argument for multiple comparisons correction

Craig M. Bennett1, Abigail A. Baird2, Michael B. Miller1, and George L. Wolford3

1 Psychology Department, University of California Santa Barbara, Santa Barbara, CA; 2 Department of Psychology, Vassar College, Poughkeepsie, NY;

3 Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

INTRODUCTION

With the extreme dimensionality of functional neuroimaging data comes

extreme risk for false positives.  Across the 130,000 voxels in a typical fMRI

volume the probability of a false positive is almost certain.  Correction for

multiple comparisons should be completed with these datasets, but is often

ignored by investigators. To illustrate the magnitude of the problem we

carried out a real experiment that demonstrates the danger of not correcting

for chance properly.

GLM RESULTS

A t-contrast was used to test for regions with significant BOLD signal change

during the photo condition compared to rest.  The parameters for this

comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent

threshold.

Several active voxels were discovered in a cluster located within the salmon’s

brain cavity (Figure 1, see above).  The size of this cluster was 81 mm3 with a

cluster-level significance of p = 0.001.  Due to the coarse resolution of the

echo-planar image acquisition and the relatively small size of the salmon

brain further discrimination between brain regions could not be completed.

Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical t-contrasts controlling the false discovery rate (FDR) and familywise

error rate (FWER) were completed.  These contrasts indicated no active

voxels, even at relaxed statistical thresholds (p = 0.25).

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.

The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at

the time of scanning.

Task. The task administered to the salmon involved completing an open-ended

mentalizing task.  The salmon was shown a series of photographs depicting human

individuals in social situations with a specified emotional valence.  The salmon was

asked to determine what emotion the individual in the photo must have been

experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10

seconds followed by 12 seconds of rest.  A total of 15 photos were displayed.  Total

scan time was 5.5 minutes.

Preprocessing. Image processing was completed using SPM2.  Preprocessing steps

for the functional imaging data included a 6-parameter rigid-body affine realignment

of the fMRI timeseries, coregistration of the data to a T1-weighted anatomical image,

and 8 mm full-width at half-maximum (FWHM) Gaussian smoothing.

Analysis. Voxelwise statistics on the salmon data were calculated through an

ordinary least-squares estimation of the general linear model (GLM).  Predictors of

the hemodynamic response were modeled by a boxcar function convolved with a

canonical hemodynamic response.  A temporal high pass filter of 128 seconds was

include to account for low frequency drift.  No autocorrelation correction was

applied.

Voxel Selection.  Two methods were used for the correction of multiple comparisons

in the fMRI results.  The first method controlled the overall false discovery rate

(FDR) and was based on a method defined by Benjamini and Hochberg (1995).  The

second method controlled the overall familywise error rate (FWER) through the use

of Gaussian random field theory.  This was done using algorithms originally devised

by Friston et al. (1994).

DISCUSSION

Can we conclude from this data that the salmon is engaging in the

perspective-taking task?  Certainly not. What we can determine is that random

noise in the EPI timeseries may yield spurious results if multiple comparisons

are not controlled for. Adaptive methods for controlling the FDR and FWER

are excellent options and are widely available in all major fMRI analysis

packages.  We argue that relying on standard statistical thresholds (p < 0.001)

and low minimum cluster sizes (k > 8) is an ineffective control for multiple

comparisons.  We further argue that the vast majority of fMRI studies should

be utilizing multiple comparisons correction as standard practice in the

computation of their statistics.

VOXELWISE VARIABILITY

To examine the spatial configuration of false positives we completed a

variability analysis of the fMRI timeseries.  On a voxel-by-voxel basis we

calculated the standard deviation of signal values across all 140 volumes.

We observed clustering of highly variable voxels into groups near areas of

high voxel signal intensity. Figure 2a shows the mean EPI image for all 140

image volumes.  Figure 2b shows the standard deviation values of each voxel.

Figure 2c shows thresholded standard deviation values overlaid onto a high-

resolution T1-weighted image.

To
To investigate this effect in greater

detail we conducted a Pearson

correlation to examine the relationship

between the signal in a voxel and its

variability.  There was a significant

positive correlation between the mean

voxel value and its variability over

time (r = 0.54, p < 0.001).  A

scatterplot of mean voxel signal

intensity against voxel standard

deviation is presented to the right.

REFERENCES

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300.

Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, and Evans AC. (1994). Assessing the

significance of focal activations using their spatial extent.  Human Brain Mapping, 1:214-220.
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voxels, even at relaxed statistical thresholds (p = 0.25).

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.

The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at

the time of scanning.

Task. The task administered to the salmon involved completing an open-ended

mentalizing task.  The salmon was shown a series of photographs depicting human

individuals in social situations with a specified emotional valence.  The salmon was

asked to determine what emotion the individual in the photo must have been

experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10

seconds followed by 12 seconds of rest.  A total of 15 photos were displayed.  Total

scan time was 5.5 minutes.

Preprocessing. Image processing was completed using SPM2.  Preprocessing steps

for the functional imaging data included a 6-parameter rigid-body affine realignment

of the fMRI timeseries, coregistration of the data to a T1-weighted anatomical image,

and 8 mm full-width at half-maximum (FWHM) Gaussian smoothing.

Analysis. Voxelwise statistics on the salmon data were calculated through an

ordinary least-squares estimation of the general linear model (GLM).  Predictors of

the hemodynamic response were modeled by a boxcar function convolved with a

canonical hemodynamic response.  A temporal high pass filter of 128 seconds was

include to account for low frequency drift.  No autocorrelation correction was

applied.

Voxel Selection.  Two methods were used for the correction of multiple comparisons

in the fMRI results.  The first method controlled the overall false discovery rate

(FDR) and was based on a method defined by Benjamini and Hochberg (1995).  The

second method controlled the overall familywise error rate (FWER) through the use

of Gaussian random field theory.  This was done using algorithms originally devised

by Friston et al. (1994).

DISCUSSION

Can we conclude from this data that the salmon is engaging in the

perspective-taking task?  Certainly not. What we can determine is that random

noise in the EPI timeseries may yield spurious results if multiple comparisons

are not controlled for. Adaptive methods for controlling the FDR and FWER

are excellent options and are widely available in all major fMRI analysis

packages.  We argue that relying on standard statistical thresholds (p < 0.001)

and low minimum cluster sizes (k > 8) is an ineffective control for multiple

comparisons.  We further argue that the vast majority of fMRI studies should

be utilizing multiple comparisons correction as standard practice in the

computation of their statistics.

VOXELWISE VARIABILITY

To examine the spatial configuration of false positives we completed a

variability analysis of the fMRI timeseries.  On a voxel-by-voxel basis we

calculated the standard deviation of signal values across all 140 volumes.

We observed clustering of highly variable voxels into groups near areas of

high voxel signal intensity. Figure 2a shows the mean EPI image for all 140

image volumes.  Figure 2b shows the standard deviation values of each voxel.

Figure 2c shows thresholded standard deviation values overlaid onto a high-

resolution T1-weighted image.

To
To investigate this effect in greater

detail we conducted a Pearson

correlation to examine the relationship

between the signal in a voxel and its

variability.  There was a significant

positive correlation between the mean

voxel value and its variability over

time (r = 0.54, p < 0.001).  A

scatterplot of mean voxel signal

intensity against voxel standard

deviation is presented to the right.
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Data “Science”

https://blog.revolutionanalytics.com/2017/05/the-datasaurus-dozen.html 
shout out Kevin Jin for sharing this last year! :)

https://blog.revolutionanalytics.com/2017/05/the-datasaurus-dozen.html


• To be fair… 

• Not all science is empirical—its possible to gain insight 
and make progress via introspection 

• E.g. simulations, case studies, motivating/illustrative 
examples 

• But! 

• Theory is only helpful if it mirrors practice. 

• “All models are wrong, but some are useful.”
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• Problem: Parents run late when 
picking kids up from day care 

• Sensible Solution: Impose a late fee

“Data” Science

https://www.nytimes.com/2005/05/15/books/chapters/freakonomics.html 
https://rady.ucsd.edu/faculty/directory/gneezy/pub/docs/fine.pdf

https://www.nytimes.com/2005/05/15/books/chapters/freakonomics.html
https://rady.ucsd.edu/faculty/directory/gneezy/pub/docs/fine.pdf
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What is Data Science?
CSCI 1951A
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• Data Collection/Cleaning 

• Probability and Statistics 

• Machine Learning 

• Advanced Topics/
Applications 

• Other Topics
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• Databases for Data Scientists: Entity-Relationship (ER) 
Diagrams, SQL [Assignment 1] 

• Web Crawling, API Calls [Assignment 2] 

• Data Cleaning and Normalization 

• Crowdsourcing 

• Working at Scale: MapReduce, Google Cloud  
[Assignment 3]
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• Probability and Statistics 

• Hypothesis Testing [Assignment 4] 

• P-Values (and their pitfalls) 

• T-Tests, Chi-Squared Tests, Regression 

• Working with stats_models
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• Intro ML: feature representations, loss functions 

• Types of models: supervised vs. unsupervised learning 

• Clustering with K-Means [Assignment 5]

• Regression revisited, prediction vs. hypothesis testing 

• Overfitting and regularization 

• Working with sklearn
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• Data Visualization in D3 [Assignment 6]

• Just enough html and javascript to do D3 :)
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• Natural Language Processing 101 [Assignment 7]

• ML Fairness 

• Matrix Factorization and Recommender Systems 

• Deep Learning 101 
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• Feb 6: Project Proposals 

• Feb 27: Data: Done! (Scraped, Cleaned, Databased). No 
changing plans after this. 

• March 19: Stats Deliverable. Initial analysis…i.e. evidence your 
first idea was wrong/won’t work. ;) 

• April 2: Mid-Semester Feedback 

• April 9: Viz Deliverable…i.e. when you realize something about 
your data you probably should have known already 

• May 7: Final Project Due. Poster Day



Grading

• 50% Assignments (~7% each) 

• 30% Final Project 

• 10% Labs 

• 10% Attendance/Clickers (must attend 2/3 of 
classes)



Late Days
•  Assignments are due at 11:59 pm on the listed due date 

• 7 late days total; no maximum per assignment 

• 20% penalty for each additional day late 

• No late days for Final Project deliverables (incl. 
intermediate deliverables) 

• Deans Notes/SEAS? -> talk to Ellie 

• Any other extension requests? -> No.



Collaboration
• Talking to each other is good. Cheating is bad. 

• Sign the form so I know you know.



To Do Now



To Do Now

• Get on the waitlist—make your case there. (Please 
don’t send emails to me directly.)



To Do Now
• Join iClicker: https://

ithelp.brown.edu/kb/articles/
iclicker-cloud-reef-instructions-for-
students 

• Make sure you register via canvas 
so that grades get synced 

https://ithelp.brown.edu/kb/articles/iclicker-cloud-reef-instructions-for-students


To Do Now
• Join the course on Piazza 

• Piazza is now opt-out (as opposed to opt-in) for 
data sharing. 

• Decide how you feel about this. Instructions for opt-
out are on Canvas.



To Do Now

• Hours are starting Sunday! Go say hi to your staff… 

• SQL assignment will be released tomorrow



To Do Now
• Start brainstorming final projects and forming groups! Project group mixer 

soon, TBD. 

• Things to consider: 

• do we want to do the same thing? (duh) 

• capstone 

• do we work at the same pace? 

• do we work during the same hours? 

• do we communicate the same way? 

• do I even like this person…?



Thank you! 
Questions?


