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Waitlist

* |t you are not registered, make sure you are on the
waitlist (link is on course webpage)

* We have a ~little™ wiggle room in the enrollment cap

* We will prioritize tairly (i.e. graduating and need
this to graduate > graduating > not graduating...)



What Is Data Science”



Harvard
Business
Review

. ’\U"...(
'XXre

*9e

&
G
©
S
-
c
]
©
¢
D

DATA

Data Scientist: The Sexiest Job of the
21st Century

More than anything, what data scientists do is make discoveries while
swimming in data. It’s their preferred method of navigating the world around
them. At ease in the digital realm, they are able to bring structure to large
quantities of formless data and make analysis possible. They identify rich
data sources, join them with other, potentially incomplete data sources, and
clean the resulting set. In a competitive landscape where challenges keep
changing and data never stop flowing, data scientists help decision makers

shift from ad hoc analysis to an ongoing conversation with data.

Data scientists realize that they face technical limitations, but they don’t
allow that to bog down their search for novel solutions. As they make
discoveries, they communicate what they’ve learned and suggest its
implications for new business directions. Often they are creative in displaying
information visually and making the patterns they find clear and compelling.
They advise executives and product managers on the implications of the data

for products, processes, and decisions.
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a team at Google couldn’t decide between two blues

they tested 4 1 shades between each blue,

showing each one to 1% of their visitors
to see which one performs better

$200 million of benefits

Why Google has 200m reasons to put engineers over designers. The Gaurdian.
The Origin of A/B Testing. Nicolai Kramer Jakobsen.
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P> LiveSlides web content

To view

Download the add-in.
liveslides.com/download

Start the presentation.




MACHINE LEARNING

PHOTO/VIDEO

[ )‘A\ ] ‘A\[“,“\t ‘k

VISUALIZATIONS

READING HABITS INCREASE CONSUMPTION
{ ()T“\l"'1i F‘,
f)»i ‘ﬁ;.\‘_ | ’;"
PREFERENCE!

Mo ! :’.'( y A z[ l’” r}I




The Scientific Method

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Think of
Interesting

Questions

Why does that
pattern occur?

Develop
General Theories

General theories must be
consistent with most or all
available data and with other
current theones.

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expecta, b, c,...

https://en.wikipedia.org/wiki/Scientific_method
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Think of
Interesting

Questions

Why does that
pattern occur?

Develop
General Theories

General theories must be
consistent with most or all
available data and with other
current theories.

Refine, Alter,
Expand, or Reject
Hypotheses

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?



\The Scientific Method

Think of
Interesting

Questions

Why does that
pattern occur?

Dem »
General Theories Y - *

General theories must be
consistent with most or all
available data and with other
current theones.

)

Refine, Alter,
Expand, or Reiect
Hyﬁothese

*‘lypotheses

What are the gener*
causes of the

phenomenon | am

wonu. ring about?




What i1s Data Science”




YOU HAD ONE JOBH

Hang the
Christmas lights...
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Data “Science”

The most distinctive jargon in U.S. job listings

Google autocomplete results:

“Why is [state] so...”

Rico

https://www.dailydot.com/unclick/state-googled-2017
http://nerdgeeks.co/us-state-words-map
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MOST-USED WORD IN EACH STATE

mttps7/xReaTorn/1845/
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e To be fair...

 Intuition plays a huge role in the scientific method (“make
observations” is Step 1).

o Exploratory analysis is necessary, its okay to not be all rigor all
the time
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Topics

1 816 26 36 46 56 66 76 86

96

“Genetics”
human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

Frequent topics observed in 17,000 Science articles
Probabilistic Topic Models. Blei (2012).
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e To be fair...

 Intuition plays a huge role in the scientific method (“make
observations” is Step 1).

o Exploratory analysis is necessary, its okay to not be all rigor all
the time
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« Exploratory analysis (even when it involves the biggest of data)
IS meant to *form™* a hypothesis, not test one
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e To be fair...

 Intuition plays a huge role in the scientific method (“make
observations” is Step 1).

o Exploratory analysis is necessary, its okay to not be all rigor all
the time

e Butl!

« Exploratory analysis (even when it involves the biggest of data)
IS meant to *form™* a hypothesis, not test one

« Good experimental design and rigorous statistics are essential if
we want to make claims about how the world works
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Cheese consumed
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https://en.wikipedia.org/wiki/Data_dredging
http://www.tylervigen.com/spurious-correlations
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Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:
An argument for multiple comparisons correction
Craig M. Bennett!, Abigail A. Baird?, Michael B. Miller', and George L. Wolford3

1 Psychology Department, University of California Santa Barbara, Santa Barbara, CA; 2 D: of

gy, Vassar College,

3 Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

INTRODUCTION

With the extreme di i ity of ional neuroimaging data comes
extreme risk for false positives. Across the 130,000 voxels in a typical fMRI
volume the probability of a false positive is almost certain. Correction for
multiple comparisons should be completed with these datasets, but is often
ignored by investigators. To illustrate the magnitude of the problem we
carried out a real experiment that demonstrates the danger of not correcting
for chance properly.

METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was approximately 18 inches long, weighed 3.8 Ibs, and was not alive at
the time of scanning.

The task administered to the salmon involved completing an open-ended
mentalizing task. The salmon was shown a series of photographs depicting human
individuals in social situations with a specified emotional valence. The salmon was
asked to determine what emotion the individual in the photo must have been
experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10
seconds followed by 12 seconds of rest. A total of 15 photos were displayed. Total
scan time was 5.5 minutes.

Image was using SPM2. Preprocessing steps
for the functional imaging data included a 6-parameter rigid-body affine realignment
of the fMRI timeseries, coregistration of the data to a T,-weighted anatomical image,
and 8 mm full-width at half-maximum (FWHM) Gaussian smoothing.

Analysis. Voxelwise statistics on the salmon data were calculated through an
ordinary least-squares estimation of the general linear model (GLM). Predictors of
the hemodynamic response were modeled by a boxcar function convolved with a
canonical hemodynamic response. A temporal high pass filter of 128 seconds was
include to account for low frequency drift. No autocorrelation correction was
applied.

Voxel Selection. Two methods were used for the correction of multiple comparisons
in the fMRI results. The first method controlled the overall false discovery rate
(FDR) and was based on a method defined by Benjamini and Hochberg (1995). The
second method controlled the overall familywise error rate (FWER) through the use
of Gaussian random field theory. This was done using algorithms originally devised
by Friston et al. (1994).

DISCUSSION

Can we conclude from this data that the salmon is engaging in the
perspective-taking task? Certainly not. What we can determine is that random
noise in the EPI timeseries may yield spurious results if multiple comparisons
are not controlled for. Adaptive methods for controlling the FDR and FWER
are excellent options and are widely available in all major fMRI analysis
packages. We argue that relying on standard statistical thresholds (p < 0.001)
and low minimum cluster sizes (k > 8) is an ineffective control for multiple
comparisons. We further argue that the vast majority of fMRI studies should
be utilizing multiple comparisons correction as standard practice in the
computation of their statistics.

REFERENCES

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300.

Fi n KJ, Worsley K1, Frackowiak RSJ, Mazziotta JC, and Evans AC. (1994). Assessing the
significance of focal activations using their spatial extent. Human Brain Mapping, 1:214-220.

GLM RESULTS

A t-contrast was used to test for regions with significant BOLD signal change
during the photo iti d to rest. The for this
comparison were #(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent
threshold.

Several active voxels were discovered in a cluster located within the salmon’s
brain cavity (Figure 1, see above). The size of this cluster was 81 mm? with a
cluster-level significance of p = 0.001. Due to the coarse resolution of the
cho-p! image isition and the relatively small size of the salmon
brain further discrimination between brain regions could not be completed.
Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical 7-contrasts controlling the false discovery rate (FDR) and familywise
error rate (FWER) were completed. These contrasts indicated no active
voxels, even at relaxed statistical thresholds (p = 0.25).

VOXELWISE VARIABILITY

standard deviation

To examine the spatial configuration of false positives we completed a
variability analysis of the fMRI timeseries. On a voxel-by-voxel basis we
calculated the standard deviation of signal values across all 140 volumes.

We observed clustering of highly variable voxels into groups near areas of
high voxel signal intensity. Figure 2a shows the mean EPI image for all 140
image volumes. Figure 2b shows the standard deviation values of each voxel.
Figure 2¢ shows thresholded standard deviation values overlaid onto a high-
resolution T,-weighted image.

?8 investigate this effect in greater
detail we conducted a Pearson
correlation to examine the relationship
between the signal in a voxel and its
variability. There was a significant
positive correlation between the mean
voxel value and its variability over
time (r = 0.54, p < 0.001). A
scatterplot of mean voxel signal
intensity against voxel standard
deviation is presented to the right.

Neural correlates of interspecies perspective taking in the
post-mortem Atlantic Salmon
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We observed clustering of highly variable voxels into groups near areas of

high voxel signal intensity. Figure 2a shows the mean EPI image for all 140
image volumes. Figure 2b shows the standard deviation values of each voxel.
Figure 2¢ shows thresholded standard deviation values overlaid onto a high-
resolution T,-weighted image.

To . . . .

To investigate this effect in greater
detail we conducted a Pearson
correlation to examine the relationship

between the signal in a voxel and if
variability. There was a significant
positive correlation between the mean
REFERENCES voxel value and its variability over
time (r = 0.54, p < 0.001). A
scatterplot of mean voxel signal
intensity against voxel standard
riston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, and Evans AC. (1994). Assessing the deviation is presented to the right.
significance of focal activations using their spatial extent. Human Brain Mapping, 1:214-220.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300.

Neural correlates of interspecies perspective taking in the
post-mortem Atlantic Salmon
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METHODS -
t-value

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.

The salmon was approximately 18 inches long, weighed 3.8 Ibs, and was not alive at

the time of scanning. A t-contrast was used to test for regions with significant BOLD signal change

during the photo diti to rest. The for this

comparison were #(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent
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voxels, even at relaxed statistical thresholds (p = 0.25).

Analysis. Voxelwise statistics on the salmon data were calculated through an
ordinary least-squares estimation of the general linear model (GLM). Predictors of
the hemodynamic response were modeled by a boxcar function convolved with a
canonical hemodynamic response. A temporal high pass filter of 128 seconds was

include to account for low frequency drift. No autocorrelation correction was
applied.

Voxel Selection. Two methods were used for the correction of multiple comparisons
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comparisons. We further argue that the vast majority of fMRI studies should To investigate this effect in greater
be utilizing multiple comparisons correction as standard practice in the detail we conducted a Pearson
computation of their statistics. correlation to examine the relationship
between the signal in a voxel and its
variability. There was a significant
positive correlation between the mean
REFERENCES voxel value and its variability over
time (r = 0.54, p < 0.001). A
scatterplot of mean voxel signal
intensity against voxel standard
Friston K1, Worsley KJ, Frackowiak RSJ, Mazziotta IC, and Evans AC. (1994). Assessing the deviation is presented to the right.
significance of focal activations using their spatial extent. Human Brain Mapping, 1:214-220.

We observed clustering of highly variable voxels into groups near areas of
high voxel signal intensity. Figure 2a shows the mean EPI image for all 140
image volumes. Figure 2b shows the standard deviation values of each voxel.
Figure 2¢ shows thresholded standard deviation values overlaid onto a high-
resolution T,-weighted image.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289-300.

Neural correlates of interspecies perspective taking in the
post-mortem Atlantic Salmon
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Roses are red.
Violets are blue.
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X Mean: 54.26
Y Mean: 417.83
X SD : 16.176
Y SD : 26.93
Corr. : -0.06
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shout out Kevin Jin for sharing this last year! :)


https://blog.revolutionanalytics.com/2017/05/the-datasaurus-dozen.html
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‘Data” Sclence

e Jo be fair...

* Not all science is empirical—its possible to gain insight
and make progress via introspection

* E.g. simulations, case studies, motivating/illustrative
examples, worst-case vs. average case runtime

* But!
* Theory is only helpful if it mirrors practice.

 “All models are wrong, but some are useful.”
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#1 NEW YORK TIMES BESTSELLER

e Problem: Parents run late when
picking kids up from day care

. . A ROGUE ECONOMIST EXPLORES
e Sensible Solution: Impose a late fee THE HIDDEN SIDE OF EVERYTHING

— T'he Wall Street Journal

STEVER D. STEPREN J.

LEVITT & DUBNER

https://www.nytimes.com/2005/05/15/books/chapters/freakonomics.html

https://rady.ucsd.edu/faculty/directory/gneezy/pub/docs/fine.pdf
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‘Data” Sclence

#1 NEW YORK TIMES BESTSELLER

e Problem: Parents run late when
picking kids up from day care

. . A ROGUE ECONOMIST EXPLORES
e Sensible Solution: Impose a late fee THE HIDDEN SIDE OF EVERYTHING

— T'he Wall Street Journal

w—gu= G roup with fine —{O— Control group

STEVER D. STEPRER J.

LEVITT & DUBNER

Late Arrivals

0 +—— S e T S . a— S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Week Number

FIGURE 1.—Average number of late-coming parents, per week

https://www.nytimes.com/2005/05/15/books/chapters/freakonomics.html

https://rady.ucsd.edu/faculty/directory/gneezy/pub/docs/fine.pdf
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Datal Science!

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Think of
Interesting

Questions

Why does that
pattern occur?

Develop
General Theories

General theories must be
consistent with most or all
available data and with other
current theones.

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expecta, b, c,...
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» Data Collection/Cleaning

* Probability and Statistics

e Advanced Topics/
Applications

o Other Topics
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This. Right Here, Right Now.
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 Databases for Data Scientists: Entity-Relationship (ER)

Diagrams, SQL [Assignment 1]

Web Crawling, API Calls [Assignment 2]

Data Cleaning and Normalization

Crowdsourcing

Working at Scale: MapReduce, Google Cloud

[Assignment 3]
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Probability and Statistics

Hypothesis Testing [Assignment 4]

P-Values (and their pitfalls)

T-Tests, Chi-Squared Tests, Regression

Working with stats_models
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Intro ML: feature representations, loss functions

Types of models: supervised vs. unsupervised learning

Clustering with K-Means [Assignment 5]

Regression revisited, prediction vs. hypothesis testing

Overfitting and regularization

Working with sklearn
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* Data Visualization in D3 [Assignment 6]

e Just enough html and javascript to do D3 :)
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* Natural Language Processing 101 [Assignment 7]

e ML Fairness

* Matrix Factorization and Recommender Systems

* Deep Learning 101
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* Feb 6: Project Proposals
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 Feb 27: Data: Done! (Scraped, Cleaned, Databased). No

changing plans after this.

 March 19: Stats Deliverable. Initial analysis...i.e. evidence your
first idea was wrong/won’t work. ;)

o April 2: Mid-Semester Feedback

o April 9: Viz Deliverable...i.e. when you realize something about

your data you probably should have known already

 May 7: Final Project Due. Poster Day



Grading

50% Assignments (~7% each)
30% Final Project
10% Labs

10% Attendance/Clickers (must attend 2/3 of
classes)



| ate Days

Assignments are due at 11:59 pm on the listed due date
/ late days total; no maximum per assignment
20% penalty for each additional day late

No late days for Final Project deliverables (incl.
intermediate deliverables)

Deans Notes/SEAS? -> talk to Ellie

Any other extension requests? -> No.



Collaboration

e Talking to each other is good. Cheating is bad.

e Sign the form so | know you know.
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* (Get on the waitlist—make your case there. (Please
don’t send emails to me directly.)



1o Do Now

— Spring 2019 CSCI

E
C’
W

 Join iClicker: https://

Acﬁm = thelp.brown.edu/kb/articles/
P Siecucions iclicker-cloud-reef-instructions-for-
Dashboard Crades students
People
Syllabus * Make sure you register via canvas
Media Library so that grades get syncead

Collaborations
Chat

iIClicker Sync



https://ithelp.brown.edu/kb/articles/iclicker-cloud-reef-instructions-for-students

1o Do Now

e Join the course on Plazza

* Plazza is now opt-out (as opposed to opt-in) for
data sharing.

* Decide how you feel about this. Instructions for opt-
out are on Canvas.

PAGE TITLE »
Home Piazza and Student Privacy - 2019



1o Do Now

* Hours are starting Sunday! Go say hi to your staff...

* SQL assignment will be released tomorrow



1o Do Now

e Start brainstorming final projects and forming groups! Project group mixer
soon, TBD.

* Things to consider:

* do we want to do the same thing”? (duh)

capstone

do we work at the same pace?

do we work during the same hours?

do we communicate the same way”?

do | even like this person...?



Thank you!
Questions?



